Контрольная работа: Одноранговая локальная сеть и сеть с выделенным сервером. Экспертная система
управлять приобретением знаний.
Взаимодействие эксперта, пользователя и структурных частей системы можно представить в виде следующей базовой структуры экспертной системы.
Базовая структура ЭС
У экспертной системы должно быть два режима работы:
режим приобретения знаний;
режим решения задач.
В режиме приобретения знаний эксперт общается с экспертной системой при посредничестве инженера знаний, в режиме решения задач в общении с экспертной системой участвует пользователь, которого интересует результат и способ его получения. Экспертная система в отличие от решения задач по алгоритму не исключает пользователя из решения, а, наоборот, сохраняет за ним инициативу. В то же время ЭС не является просто пассивным источником полезной информации подобно книжному справочнику или базе данных. В нужные моменты ЭС подсказывает необходимое направление решения задачи, развивает цепочки умозаключений, объясняет свои действия.
Традиционно процесс распознавания разделяется на два этапа: обучение и собственно распознавание.
На первом этапе обрабатываются данные многочисленных наблюдений над отдельными представителями исследуемого класса объектов и на основе полученных результатов строится некоторое решающее правило.
Второй этап предполагает применение описанного привила для распознавания интересующих нас, но непосредственно не измеряемых свойств других объектов данного класса.
Экспертные системы ориентированы на решение широкого круга задач в неформализованных областях, решение задачи распознавания образов в таких областях предполагает составление описаний объектов и правил, определяющих по этим описаниям принадлежность объектов к тем или иным классам.
Процедуры применения таких правил к каким-либо объектам в экспертных системах подчиняются различным стратегиям. Наиболее часто применяются стратегии прямого или обратного вывода. Используются также комбинированные стратегии, стратегии на основе так называемой доски объявлений. Прямой вывод - это вывод, направляемый целями (правилами) к данным. Обратный вывод - это вывод, направляемый данными к целям.
В сложных экспертных системах (например, понимания речи) ни один из источников знаний системы не может гарантировать единственности и правильности, получаемых им результатов, для того чтобы ошибка одного источника знания не влияла роковым образом на работу других, источники знания должны рассматриваться как независимые.
Для разработки ЭС используются те же языки и системы программирования, что и для обычных программ, но наличие таких специфических для ИИ структурных частей, как логический вывод, естественно-языковый интерфейс, делает предпочтительным использование для разработки ЭС таких языков ИИ, как Липс, Пролог и специальных средств поддержки разработки.
Этапы развития средств разработки ЭС.
Существуют различные средства поддержки разработки программ. Трансляторы языков программирования и отладчики для контроля за состоянием программ во время выполнения были в числе первых таких средств. Отладчики наряду с экранными редакторами и в настоящее время остаются наиболее часто используемыми средствами. К другим популярным средствам относятся программы "красивой" печати, поддержка управления конфигурацией, программа перекрестных программных ссылок и трассировщик выполнения.
Следующим шагом в развитии средств разработки был интегрированный набор средств, названный "инструментальным ящиком", каждое средство проектировалось с учетом остальных, поэтому система обеспечивала возможность обращения к другим средствам.
Отметим некоторые особенности этапов жизненного цикла экспертных систем. Тестирование экспертных систем отличается от тестирования обычных систем.
Во-первых, экспертные системы часто обладают недетерминированным поведением, потому что стратегия разрешения конфликтов может зависеть от параметров времени выполнения. Это делает поведение невоспроизводимым, и, следовательно, более трудным для отладки.
Во-вторых, для правил в отличие от процедур в традиционном программном обеспечении нет никаких точных отношений ввода-вывода. Это затрудняет применение для тестирования анализа ввода-вывода.
В-третьих, число способов, которыми могут быть активизированы правила, слишком велико, чтобы пользоваться средствами покрытия ветвей и путей.
Макетирование является единственным эффективным способом тестирования экспертной системы.
Сопровождение и модификация - важная часть разработки экспертных систем.
С разработкой и использованием экспертных систем тесно связаны такие понятия, как знания и базы знаний. Особая роль знаний в экспертных системах обусловлено, прежде всего, областью их применения, экспертные системы предназначены для решения трудноформализуемых задач. Экспертные системы позволяют аккумулировать, воспроизводить и применять знания, которые сами по себе обладают огромной ценностью.
Источниками знаний для конкретной ЭС могут быть учебники, справочники, материалы конкретных исследований в проблемной области и т.п. Но классическим источником знаний является эксперт - профессионал в данной предметной области.
При разработке ЭС необходимо начинать работу с создания "бумажной" её модели. Эта модель формируется в процессе общения с экспертом. При этом выделяются основные понятия, которыми оперирует эксперт, формируется тезаурус системы. После этого на нескольких несложных примерах подробно анализируется метод, которым эксперт решает такого рода задачи.
В базе знаний в некотором закодированном виде хранятся формализованные знания эксперта. На современном этапе развития ЭС используется несколько форм представления знаний.
Выделим из них четыре основные:
1. "Тройка" объект - атрибут - значение, например: дом - цвет - зелёный; пациент - температура - высокая. Эта форма представления знаний определяет "объект", обладающий некоторыми атрибутами (свойствами), которые могут принимать значения из известного набора.