Контрольная работа: Оптимизация выбора потребителя

Или даже так:

(1)

Поскольку u(X) – непрерывная функция своих аргументов, а бюджетное множество В ограниченно и компактно, то u(X) достигает на множестве В своего максимума, т.е. решение задачи 1 существует. Очевидно, что любая точка Х* максимума функции c(X) лежит на границе G бюджетного множества. Действительно, если предположим противное, то есть что Z – точка максимума, но Z G, тогда PZ <Q. Однако тогда потребитель имеет неиспользованное количество денег Q – PZ, и на эти деньги он может купить какое-то количество товаров Y, причём можно считать, что Y>0. Но тогда YВ, однако u(Z+Y)>u(Z). В силу того, что каждый товар желателен. Получили противоречие с тем, что Z – точка максимума функции c(X) на бюджетном множестве.

Предположение: Если u(X) – строго вогнут, то решение задачи (1) единственно, т.е. существует только одна точка максимума функции полезности на бюджетном множестве.

Напомним, что функция u(X) называется строго вогнутой, если для любых X, Y из того, что 0 <λ<1 следует, что u(λx+(1-λ)Y)> λ u u(X)+(1-λ) u(Y).

Доказательство. Предположим, что А и С – две точки максимума, т.е. u(X)u(A)=u(C) для любой точки X множества В. Мы уже знаем, что точки А и С лежат на границе бюджетного множества, т.е. РА=РС=Q. Рассмотрим точку Е=А/2 + С/2. Видим, что РЕ = Р(А/2 + С/2)= Q, т.е. ЕВ. В силу строгой вогнутости функции u(X) имеем: u(Е) > u(А)= u(С). Получили противоречие с тем, что А и С – есть точки максимума функции на бюджетном множестве.

Итак, при строгой вогнутости функции полезности существует в бюджетном множестве единственная точка максимума функции полезности. Таким образом, у потребителя даже нет выбора в том, как с наибольшей потратить свои деньги, т.к. существует единственный набор товаров, максимизирующий полезность. Это единственная точка максимума называется точкой спроса, или просто спросом потребителя. Эта точка обозначается Х*.

Изучим точку спроса. Пока установлено только, что она должна лежать на границе бюджетного множества. Таким образом, задача (1) сводиться к следующей:

Или


Эту задачу можно решить с помощью множителей Лагранжа. Составим функцию Лагранжа L(X, λ)=u(X) + λ(Q-PX), найдём частные производные и приравняем их к нулю:


Заключение

Таким образом, существует только одна точка максимума функции полезности на бюджетном множестве.

Следовательно, у потребителя даже нет выбора в том, как с наибольшей выгодой потратить свои деньги, т.к. существует единственный набор товаров, максимизирующий полезность. Это единственная точка максимума называется точкой спроса, или просто спросом потребителя.

К-во Просмотров: 130
Бесплатно скачать Контрольная работа: Оптимизация выбора потребителя