Контрольная работа: Основные направления биомеханики
Применение законов механики в биомеханике совершенно необходимо, но оно недостаточно. Как биомеханическая система тело человека существенно отличается от абсолютно твердого тела или материальной точки, которые рассматриваются в классической механике. Внутренние силы, которые при решении задач в механике твердого тела стараются исключить, имеют определяющее значение для движений человека. Безразличие к источнику силы в механике сменяется крайним интересом к этому вопросу в биомеханике.
Наряду с механическими причинами особой сложности движений животных существуют немеханические причины, которые играют еще большую роль. Именно эти причины представители данного направления обычно не рассматривают. Чисто механический подход создает почву для неоправданных упрощений, что часто приводит к неправильным выводам. Кроме того, появляется опасность недооценки качественной специфики физики живого. Возникают механистические тенденции объяснения качественно более высоких явлений простейшими механическими факторами.
Функционально-анатомическое направление. Функционально-анатомический подход характеризуется преимущественно описательным анализом движений в суставах, определением участия мышц при сохранении положений тела и в его движениях.
Изучая форму и строение органов опоры, а также движения человека в тесной связи с их функцией, анатомы исследовали преимущественно двигательный аппарат. Аналитическое изучение тела человека преобладало в работах О. Фишера, Р. Фикка, Г. Брауса, С. Моллье и других зарубежных анатомов.
Вместе с тем расширялось изучение функций двигательного аппарата как целого. Один из основателей функциональной анатомии П.Ф. Лесгафт рассматривал все системы и органы прежде всего во взаимодействии, как части единого целостного живого организма. Высоко оценивая возможности формообразующего влияния функций, П.Ф. Лесгафт одним из первых начал разрабатывать научные основы физического образования детей и молодежи. Функционально-анатомическое направление развивалось учениками П.Ф. Лесгафта и продолжателями его учения А.А. Красуской, Е.А. Котиковой, Е.Г. Котельниковой и др. Большой вклад в учение о движениях внес М.Ф. Иваницкий, разрабатывавший раздел курса анатомии - двигательный аппарат как целое (динамическая анатомия). Во многих странах наука о движениях - кинезиология - представляет собою в настоящее время своеобразное сочетание механического и функционально-анатомического направлений. Для анатомического направления в целом характерен описательный подход - преимущественно качественные характеристики при незначительном применении количественной меры. Однако сейчас широко применяются регистрация электрической активности мышц (электромиография), дающая ценный вклад в определение времени и степени участия мышц в движениях, согласования активности отдельных и групп мышц.
Новое направление в функциональной анатомии - спортивная морфология (А.А. Гладышева) - способствует познанию специфических особенностей опорно-двигательного аппарата человека в связи с занятиями спортом. Конкретизация знаний о морфологических основах биомеханических систем обеспечивает более глубокое и правильное определение физической и технической подготовки в физическом воспитании, в частности в спорте.
Физиологическое направление. Физиологическое направление в биомеханике утвердило представление о рефлекторной природе движений, кольцевом характере управления движениями и об обусловленной этим чрезвычайной сложности движений человека.
На развитие биомеханики оказали существенное влияние физиология нервно-мышечного аппарата, учение о высшей нервной деятельности и нейрофизиология. Признание рефлекторной природы двигательных действий и механизмов нервной регуляции при взаимодействии организма и среды в работах И.М. Сеченова, И.П. Павлова, Н.Е. Введенского, А.А. Ухтомского, П.К. Анохина, Н.А. Бернштейна и других ученых составляет физиологическую основу изучения движений человека. Результаты многочисленных, проведенных за последние десятилетия во многих странах мира исследований механизмов центральной нервной системы и нервно-мышечного аппарата позволяют наиболее полно представить высокую сложность управления движениями.
Исследования Н.А. Бернштейна, ставшие уже классическими, дали результаты, которые привели его в свое время к новой системе взглядов на движения и управление ими. Развивая идеи И.М. Сеченова о рефлекторной природе управления движениями путем использования чувствительных сигналов, Н.А. Бернштейн выдвинул положение о кольцевом характере процессов управления. Его гипотеза об уровневом построении движений сыграла важную роль в дальнейшей разработке физиологического направления в биомеханике. Глубокое изучение действительных явлений в самом опорно-двигательном аппарате вызвало особое внимание к управлению движениями. Выявленные особенности управления движениями показали, насколько были неверны прежние упрощенные объяснения механизма движений.
Системно-структурный подход. Системно-структурный подход в биомеханике характеризуется изучением состава и структуры систем как в двигательном аппарате, так и в его функциях. Этот подход в известной мере объединяет механическое, функционально-анатомическое и физиологическое направления в развитии теории биомеханики.
По современным представлениям, опорно-двигательный аппарат рассматривается как сложная биомеханическая система; движения человека также изучаются как сложная целостная система.
Понятие о системе, в которой множество элементов (ее состав) закономерно объединено взаимными связями, взаимозависимостью (ее структура), характерно для современного научного представления о мире. Системно-структурный подход требует изучения системы как единого целого, потому что ее свойства не сводятся к свойствам отдельных элементов. Важно изучать не только состав, но и структуру системы, рассматривать во взаимосвязи строение и функцию.
Идеи о системности внес в изучение двигательной деятельности также Н.А. Бернштейн. Кибернетический, по сути дела, подход к движениям был им осуществлен более чем за 10 лет до оформления кибернетики как самостоятельной науки.
Современный системно-структурный подход не только не отрицает значения в биомеханике всех направлений, а как бы объединяет их; при этом каждое направление сохраняет в биомеханике свое значение.
тестирование двигательных качеств
Описание методов тестирования, применяемых для биомеханического контроля в физическом воспитании и спорте, начнем с тестов, позволяющих оценить уровень развития двигательных качеств. На этой основе учитель физкультуры или тренер может выбирать из числа известных или самостоятельно создавать тесты, необходимые ему в практической работе.
Биомеханические тесты выносливости позволяют установить, какой объем работы человек может выполнить и как долго может работать без снижения эффективности двигательной деятельности. Например, при беге с постоянной скоростью наступает момент, когда человек не может поддержать исходную длину шага (компенсированное утомление), а спустя еще некоторое время он вынужден снизить скорость (декомпенсированное утомление) (рис.1). Чем выносливее человек, тем дольше не наступает утомление.
Вместо скорости можно программировать длину дистанции и измерять минимальное время, за которое человек справляется с заданием. Этот тест аналогичен соревновательному упражнению в циклических видах спорта.
Есть и третий вариант теста, когда ограничивается продолжительность упражнения и измеряется преодоленное расстояние. Известно несколько разновидностей этого теста: 60-минутный беговой тест, 7-минутный тест для гребцов, разные варианты теста Купера (беговой, плавательный и т.п.).
Согласно правилу обратимости двигательных заданий все три разновидности теста на выносливость эквивалентны (табл.1), т.е. при тестировании группы людей наиболее выносливые в одном из этих трех тестов будут наиболее выносливыми и в двух других.
Примечание. Для тестирования выносливости используют не только циклические локомоции, но и другие физические упражнения, поэтому скорость передвижения - частный случай интенсивности мышечной работы, а преодоленное расстояние - частный случай объема выполненной работы.
Рис 1. Измерение скорости, длины шаг и частоты шагов (темпа) у человека, выполняющего тест на выносливость: 1. Компенсированное утомление. 2. Декомпенсированное утомление.
Тестирование силовых качеств осуществляется либо в упражнениях статического характера, либо в таких общеразвивающих упражнениях, где выполняется локальная или регионарная мышечная работа. В первом случае мерой силовых возможностей служит величина проявляемой силы (Fo) и продолжительность ее удержания. Во втором случае определяется, сколько раз подряд человек может сжать или растянуть пружину динамометра, подтянуться, отжаться и т.п. Конкретных упражнений, в которых оцениваются силовые качества, очень много. Это неудивительно, ведь двигательный аппарат человека включает в себя около 600 мышц, которые по-разному взаимодействуют в различных упражнениях.
Таблица 1
Проявляемая человеком сила зависит от позы, от углов в суставах. Влияние суставного угла на проявляемую силу иллюстрирует рис.28. Изображенный на нем график показывает, что, например, оптимальный угол в локтевом суставе близок к 80°. В этом случае угол между направлением тяги двуглавой мышцы плеча и костями предплечья близок к 90°.
Вообще говоря, измерение силы можно проводить при любой величине суставного угла. Важно лишь, чтобы он всегда был одним и тем же.
Рис 2. Сила тяги мышцы, необходимая для удержания груза в зависимости от величины суставного угла.