Контрольная работа: Основные параметры безопасности жизнедеятельности
Принцип действия ламп накаливания основан на тепловом действии электрического тока: вольфрамовая нить лампы, раскаленная до 2500–2700 °С, излучает световой поток. Лампы накаливания в настоящее время являются наиболее массовым источником света. Их основные достоинства: широкий диапазон мощностей, напряжений и типов, приспособленных к определенным условиям применения; непосредственное включение в сеть без дополнительных аппаратов; работоспособность при значительных отклонениях напряжения в сети от номинального; почти полная независимость от условий окружающей среды (вплоть до возможности работать погруженными в воду), в том числе от температуры, компактность. К недостаткам ламп накаливания относятся: низкий энергетический КПД (видимое излучение составляет не более 4% потребляемой электроэнергии); в спектре света преобладают инфракрасные лучи; изменение в сторону снижения светового потока и КПД в процессе эксплуатации; высокая температура на поверхности колбы (до 250–300 °С через 10–12 мин после включения), малый срок службы (до 1000 ч) и резкое его снижение при незначительных превышениях напряжения питающей сети.
В газоразрядных лампах видимое излучение создается электрическим разрядом в газах или парах металлов. В большинстве случаев такое излучение имеет ту или иную цветность и непосредственно для целей освещения малопригодно. Этот недостаток был устранен применением в газоразрядных лампах порошкообразных кристаллических светосоставов – люминофоров, набор которых позволяет получить излучение любой цветности. Основными типами газоразрядных ламп являются трубчатые люминесцентные лампы низкого давления и лампы типа ДРЛ (дуговая, ртутная, люминесцентная).
Отечественной промышленностью выпускаются люминесцентные лампы различной мощности, напряжения, формы и цветности излучения. Трубчатые люминесцентные лампы имеют ряд преимуществ: высокая световая отдача, достигающая 76 лм / Вт (при максимум 18 лм / Вт у ламп накаливания); большой срок службы, доходящий до 10000 ч у стандартных ламп; возможность иметь различный спектральный состав света, в том числе и близкий к естественному дневному свету; незначительный нагрев поверхности трубки (до 50 °С); относительно малая яркость светящей поверхности. Основными недостатками этих ламп являются сложность схемы включения; ограниченная единичная мощность и большие размеры при данной мощности; зависимость характеристик ламп от температуры окружающей среды и напряжения питающей сети; значительное снижение светового потока к концу срока службы (до 50%); вредные для зрения пульсации светового потока при питании лампы переменным током. Освещение движущихся предметов пульсирующим потоком может привести к так называемому стробоскопическому эффекту, который проявляется в искаженном зрительном восприятии истинного характера движения. Так, например, в отдельных случаях движущийся предмет кажется неподвижным, в других – движущимся в противоположном направлении. Это крайне нежелательное и даже опасное явление исправляется включением ламп в разные фазы сети или же при помощи специальных схем включения.
Газоразрядная лампа ДРЛ конструктивно отличается от люминесцентных ламп. Она состоит из прямой кварцевой трубки (горелки), смонтированной в стеклянном баллоне, стенки которого изнутри покрыты люминофором. Внутри горелки находятся дозированная капелька ртути и газ аргон; в торцы ее впаяны вольфрамовые активированные электроды. Лампа имеет резьбовой цоколь.
Электрический разряд в парах ртути высокого давления, возникающий в лампе под действием приложенного к ней напряжения, сопровождается интенсивным излучением света, в спектре которого почти полностью отсутствуют оранжево-красные лучи. Этот недостаток устраняется люминофором, покрывающим внутренние стенки баллона и подобранным таким образом, что он под действием ультрафиолетовых лучей разряда излучает свет оранжево-красного цвета. Смешиваясь с основным световым потоком лампы, он исправляет его интенсивность и делает лампу пригодной для целей освещения.
Лампы ДРЛ рекомендуется применять для общего освещения производственных помещений преимущественно высотой 6 м и более, если по характеру работы не требуется точное различие цветов и оттенков, основных проходов и проездов с интенсивным движением транспорта и людей на территории предприятия, других участков открытых пространств, требующих повышенной освещенности.
Световой поток большинства источников света излучается в пространстве по всем направлениям. Для рационального освещения помещения или открытого пространства требуется обычно распределить световой поток источника света вполне определенным образом: направить его вниз (в нижнюю полусферу) или вверх (верхнюю полусферу), в одних случаях распределить его более или менее равномерно на большой площади, в других – сконцентрировать на небольшом участке (рабочем месте) и т.д. Для такого перераспределения светового потока применяют осветительную арматуру.
Основным назначением осветительной арматуры является перераспределение светового потока источника света. Кроме того, она предохраняет зрение работающих от чрезмерной яркости источников света, защищает лампу от механических повреждений, защищает полости расположения источника света и патрона от воздействия окружающей среды, служит для крепления источника света, проводов, пускорегулирующих аппаратов (для газоразрядных источников) и других конструктивных узлов и деталей светового прибора.
Осветительная арматура рассчитывается на использование лампы определенной мощности, допустимой для данного типа светового прибора. Различают две группы осветительных приборов: ближнего действия (светильники) и дальнего действия (прожекторы).
Светильники – источники света, заключенные в арматуру, – предназначены для правильного распределения светового потока и защиты глаз от чрезмерной яркости источника света. Арматура защищает источник света от механических повреждений, а также дыма, пыли, копоти, влаги, обеспечивает крепление и подключение к источнику питания.
По конструктивному исполнению светильники бывают открытые, защищенные, закрытые, пыленепроницаемые, влагозащищенные, взрывозащищенные.
По распределению светового потока светильники подразделяются на светильники прямого, рассеянного и отраженного света. Светильники прямого света более 80% светового потока направляют в нижнюю полусферу за счет внутренней отражающей эмалевой поверхности. Светильники рассеянного света излучают световой поток в обе полусферы: одни – 40–60% светового потока вниз, другие – 40 – 60% вверх. Светильники отраженного света более 80% светового потока направляют вверх на потолок, а отражаемый от него свет направляется вниз в рабочую зону.
В помещениях с невысокими отражающими свойствами стен я потолков целесообразно применять светильники прямого света. В помещениях, стены и потолки которых обладают высокими отражающими свойствами, надлежит устанавливать светильники отраженного света. В помещениях с большой площадью и небольшой высотой целесообразно использовать светильники рассеянного света.
Для защиты глаз от блесткости светящейся поверхности ламп служит защитный угол светильника – угол, образованный горизонталью от поверхности лампы (края светящейся нити) и линией, проходящей через край арматуры.
Светильники для люминесцентных ламп в основном имеют прямое светораспределение. Мерой защиты от прямой блесткости служат защитный угол, экранирующие решетки, рассеиватели из прозрачной пластмассы или стекла.
С помощью соответствующего размещения светильников в объеме рабочего помещения создается система освещения. Общее освещение может быть равномерным или локализованным. Общее размещение светильников (в прямоугольном или шахматном порядке) для создания рациональной освещенности производят при выполнении однотипных работ по всему помещению, при большой плотности рабочих мест (сборочные цеха при отсутствии конвейера, деревоотделочные и др). Общее локализованное освещение предусматривается для обеспечения на ряде рабочих мест освещенности в заданной плоскости (термическая печь, кузнечный молот и др.), когда около каждого из них устанавливается дополнительный светильник (например, кососвет), а также при выполнении на участках цеха различных по характеру работ или при наличии затеняющего оборудования.
Правила и нормы искусственного освещения основываются на закономерностях, определяющих работоспособность органов зрения. Глаз непосредственно реагирует на яркость, и именно яркость объекта (при прочих равных условиях) определяет условия видения. Однако расчет и измерение яркости весьма затруднительны, поэтому в качестве нормируемой величины принята освещенность, которая в большинстве случаев пропорциональна яркости.
3. Экобиозащитная техника
Защита от вибрации, шума
Вибрация – это совокупность механических колебаний, простейший вид которых – гармонические. В ГОСТ 24346–80 «Вибрация. Термины и определения» вибрация определяется как движение точки или механической системы, при котором происходит поочередное возрастание и убывание во времени значений хотя бы одной координаты. Вибрацию вызывают неуравновешенные силовые воздействия, возникающие при работе различных машин и механизмов. Примером таких устройств могут служить ручные перфораторы, кривошипно-шатунные механизмы, детали которых совершают возвратно-поступательные движения. Вибрацию также создают неуравновешенные вращающиеся механизмы (электродрели, ручные шлифовальные машины, металлообрабатывающие станки, вентиляторы), а также устройства, в которых движущиеся детали совершают ударные воздействия (зубчатые передачи, подшипники). В промышленности используются также специальные вибрационные установки, в частности, при уплотнении бетонных смесей, при дроблении, измельчении и сортировке сыпучих материалов, при разгрузке транспортных средств и в других случаях.
Вибрации могут наблюдаться в городской среде и жилых зданиях от технологического оборудования ударного действия, рельсового и тяжелого транспорта, строительных машин. Вибрации распространяются по грунту. Протяженность зоны воздействия вибраций определяется величиной их затухания в грунте, которая составляет примерно 1 дБ/м. Чаще всего на расстоянии 50…60 м от магистралей рельсового транспорта вибрации затухают. Зоны действия вибраций в районе кузнечно-прессовых цехов, оснащенных молотами с облегченными фундаментами, значительно больше и могут иметь радиус до 200 м. Значительные вибрации и шум в жилых зданиях могут создавать расположенные в них технические устройства (насосы, лифты, трансформаторы, мусоропроводы).
Вибрирующую систему можно охарактеризовать параметрами:
♦амплитудой перемещения, т.е. наибольшим отклонением колеблющейся точки от положения равновесия;
♦колебательной скоростью, или виброскоростью;
♦ускорением колебаний, или виброускорением;
♦периодом колебаний;
♦частотой колебаний.
Если вибрации имеют несинусоидальный характер, то их можно представить в виде суммы синусоидальных (гармонических) составляющих с помощью разложения в ряд Фурье.
Значения виброскорости и виброускорения для различных источников изменяются в очень широких пределах, поэтому пользуются их логарифмическими характеристиками.