Контрольная работа: Основные понятия, определения и законы в теории электрических цепей

Годограф передаточной функции Ku(ω) = 1 + jωRC располагается на комплексной плоскости в четвертях:

1

Годограф (АФХ) передаточной функции Ku(ω) = 1/(1 + jωRC) располагается на комплексной плоскости в четвертях:

4

Комплексным параметром электрической цепи называют:

Отношение комплексной амплитуды отклика к комплексной амплитуде воздействия.

Частотной характеристикой электрической цепи называют:

Отношение комплексной амплитуды отклика к комплексной амплитуде воздействия.

Амплитудно-частотной характеристикой электрической цепи называют:

Отношение амплитуды отклика к амплитуде гармонического воздействия, без учета начальных фаз.

Фазово-частотной характеристикой электрической цепи называют:

Зависимость от частоты сдвига по фазе между откликом и гармоническим воздействием.

Амплитуды токов через реактивные элементы в последовательном колебательном контуре на резонансной частоте находятся в соотношении:

2. ImL>ImC.3. ImL<ImC.

Амплитуды токов через реактивные элементы в параллельном колебательном контуре на резонансной частоте находятся в соотношении:

ImL=ImC

Амплитуды напряжений на реактивных элементах в последовательном колебательном контуре на резонансной частоте находятся в соотношении:

UmL=UmC

Число частотных характеристик электрической цепи:

равно, числу параметров электрической цепи.

Амплитуды напряжений на реактивных элементах в параллельном колебательном контуре на резонансной частоте находятся в соотношении:

2. UmL>UmC.3. UmL<UmC.

Число параметров и частотных характеристик двухполюсника равно:

два

Число параметров и частотных характеристик четырехполюсника равно:

двенадцать

Фазовый сдвиг между напряжением и током на резонансной частоте на входе последовательного колебательного контура:

j=0

Характеристическое сопротивление колебательного контура показывает:

К-во Просмотров: 1060
Бесплатно скачать Контрольная работа: Основные понятия, определения и законы в теории электрических цепей