Контрольная работа: Основные законы мышления
Основные законы мышления
Анализ наиболее общих форм мышления – понятий, суждений. умозаключений, доказательств – будет неполным, если не рассмотреть еще основных законов мышления, действующих в них и пронизывающих всю их ткань.
Неосновные законы, о которых говорилось в соответствующих местах, – закон обратного отношения между содержанием и объемом понятия, законы распределенности терминов в простых суждениях. законы соединения простых суждений в сложные и их взаимоотношений между собой, законы различных типов, видов и разновидностей умозаключений и т.д. – связаны лишь с определенной формой мышления и, следовательно, действуют в ограниченной сфере.
Важнейшая особенность основных законов мышления состоит в том, что они носят здесь универсальный характер, т.е. лежат в основе функционирования всего мышления в целом. Можно сказать без преувеличения, что без этих законов процесс мышления в целом был бы попросту невозможен. Ведь в них отражаются фундаментальные – наиболее общие и глубокие свойства, связи и отношения объективного мира, постигаемого нашим мышлением. Вот почему они рассматриваются нами после анализа всех конкретных мыслительных форм.
Основные законы мышления, в свою очередь, подразделяются на два типа: формально-логические законы и законы диалектической логики, находящиеся в определенном соотношении между собой.
Изучение тех и других законов необходимо и важно для понимания сложных глубинных процессов, протекающих в мышлении естественным образом, независимо от нашего осознания их и воли, а также для использования этих законов в практике мыслительной деятельности.
Основные формально-логические законы
Основными в формальной логике считаются четыре закона – тождества, противоречия, исключенного третьего и достаточного основания. Они освящены многовековой традицией логической науки и играют важную роль в любом, в том числе современном. мышлении. Знание этих законов необходимо для использования их в практике как научного, так и повседневного мышления и, конечно. в юридической практике.
Исходным в ряду формально-логических законов выступает закон тождества. С ним органически связан закон противоречия.
Закон исключенного третьего
С законом противоречия, в свою очередь, тесно связан закон исключенного третьего.
Закон противоречия гласит, что утверждение и отрицание одного и того же не могут быть вместе истинными: одно из них непременно ложно. Но могут ли они быть одновременно ложными? Об этом закон противоречия ничего не говорит.
На этот вопрос отвечает закон исключенного третьего. В этом смысле его можно считать дополнением к закону противоречия (а следовательно, и к закону тождества). Его действием также обусловлена так или иначе определенность мышления, его последовательность, непротиворечивость. Но он обладает относительной самостоятельностью, имеет свою сферу действия и свое предназначение в мышлении.
Объективный источник и существо закона исключенного третьего. Подобно законам тождества и противоречия, этот закон имеет объективный источник. В нем отражается та же качественная определенность предметов и явлений действительного мира, сохраняющаяся до поры до времени в процессе их изменения и развития. А это означает, что нечто существует или не существует, входит в какой-то класс предметов или не входит, ему что-то присуще или не присуще и т.д.
Поэтому в той мере, в какой мир альтернативен, раздвоен на «наличие – отсутствие», мышление, если оно верно отражает его. не может не быть тоже альтернативным. В нем неизбежно действует закон исключенного третьего.
Открытый Аристотелем, этот закон гласит: «Не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходимо что бы то ни было одно либо утверждать, либо отрицать» '. И в другом месте: «О чем бы то ни было истинно или утверждение, или отрицание…»2
Обосновывая неизбежность действия этого закона и невозможность его отрицания, Аристотель приводил ряд (семь!) доводов в его пользу. В более позднее время он получил название закона исключенного третьего, хотя формулировки ему давались самые различные. Наиболее обшей из них является следующая: два противоречащих высказывания об одном и том же предмете не могут быть вместе ложными: одно из них по необходимости истинно. Формула этого закона: «А или не-А».
Чтобы понять действие закона, приведем две пары несовместимых высказываний:
1) «Байкал глубокий» – «Байкал мелкий»;
2) «Байкал глубокий» – «Байкал неглубокий».
Обратим внимание, что в первой паре предикатами выступают противоположные понятия («глубокий» – «мелкий»), а во второй – противоречащие понятия («глубокий» – «неглубокий»). Между ними, как мы помним, имеется не только сходство, но и различие. Противоположные отрицают друг друга, но не исчерпывают объема родового понятия. Спрашивается: могут ли два высказывания с противоположными предикатами быть одновременно истинными? Нет. Об этом говорит закон противоречия. Но могут ли они быть одновременно ложными? Да, потому что не исчерпывают всех возможных вариантов. Может статься, что «Байкал средней глубины». Закон исключенного третьего здесь не действует.
Что же касается противоречащих понятий («глубокий» – «неглубокий»), то они не только отрицают друг друга, но и исчерпывают объем родового понятия. Возникают те же вопросы. Могут ли оба суждения с подобными предикатами быть одновременно истинными? Нет. Это опять-таки следует из закона противоречия. А могут ли они быть одновременно ложными? Вот тут-то и «зарыта собака». В отличие от первой пары они не могут быть и одновременно ложными. Ведь третьего здесь попросту нет, так как озеро либо глубокое, либо неглубокое. Одно из них непременно истинно. Эта закономерность, свойственная подобным суждениям, и нашла свое отражение в законе исключенного третьего.
Теперь нетрудно понять, какова сфера действия этого закона. Она тоже весьма широка. В общей форме можно сказать так: не всюду там, где действует закон противоречия, действует и закон исключенного третьего. Но всюду, где он проявляет свою силу, проявляется и закон противоречия.
Как и закон противоречия, закон исключенного третьего – результат обобщения практики применения суждений. Но если в законе противоречия выражаются их отношения по истинности, то в законе исключенного третьего – по ложности. Он действует в отношениях между противоречащими (контрадикторными) суждениями (А – О, Е – I).Но он не действует во взаимоотношениях между противоположными (контрарными) суждениями (А – Е). хотя закон противоречия действует и здесь: они не могут быть вместе истинными. но могут быть одновремен но ложными. Действие закона исключенного третьего обнаруживается и в сложных суждениях (например. в строгой дизъюнкции, когда составляющие ее суждения взаимно исключают друг друга, а следовательно, не могут быть вместе не только истинными, но и ложными).
Закон исключенного третьего проявляется также в умозаключениях и доказательстве. Например, он лежит в основе непосредственных умозаключений через превращение суждений и через отношение противоречащих (контрадикторных) суждений в логическом квадрате. Без его действия было бы невозможно косвенное доказательство. Устанавливая ложность какого-либо тезиса, мы тем самым доказываем истинность противоречащего ему тезиса, поскольку оба они не могут быть вместе ложными.
Требования закона исключенного третьего и их нарушения. На основе этого закона можно сформулировать определенные требования к мышлению. Чтобы понять их принципиальный смысл, вспомним историю с буридановым ослом. Как гласит легенда, он сдох с голоду, ибо так и не смог выбрать одну из двух совершенно одинаковых охапок сена. Перед человеком нередко тоже встает дилемма, но уже иная: выбирать не из одинаковых, а из взаимоотрицающих высказываний. Закон исключенного третьего как раз и предъявляет требование выбора – одного из двух – по принципу «или – или», tertium non datur (третьего не дано). Он означает, что при решении альтернативного вопроса нельзя уклоняться от определенного ответа; нельзя искать что-то промежуточное, среднее, третье.
С такого рода альтернативами человек сталкивается довольно часто. Еще в Древнем Риме родилась крылатая фраза: «Aut Caesar, aut nihil» (буквально «Или Цезарь, или ничто»), которую иногда употребляют в обобщенном смысле: «Все или ничего». Подобную интеллектуальную ситуацию гениально выразил У. Шекспир, вложив в уста Гамлета слова, ставшие тоже крылатыми: «Быгь или не быть?» У А. Пушкина мы находим: «Она меня зовет: поеду или нет?» Ясно, что из этих вариантов приходится выбирать: ничего третьего нет.