Контрольная работа: Основы решения эконометрических задач
а1 – показывает на сколько в среднем изменяется значение результативного признака при изменении факторного признака на единицу собственного измерения [5]
2. По Российской Федерации за 2001 год известны значения двух признаков (табл. 1):
Таблица 1
Месяц | Расходы на покупку продовольственных товаров в общих расходах, % (y) | Средний денежный доход на душу населения, руб. (x) |
Январь | 69 | 1954,7 |
Февраль | 65,6 | 2292,0 |
Март | 60,7 | 2545,8 |
Апрель | … | … |
Май | … | … |
Июнь | … | … |
Июль | … | … |
Август | … | … |
Сентябрь | … | … |
Октябрь | 53,3 | 3042,8 |
Ноябрь | 50,9 | 3107,2 |
Декабрь | 47,5 | 4024,7 |
Для оценки зависимости y от x построена парная линейная регрессионная модель с помощью метода наименьших квадратов:
y = a + bx + e, где а = 196/4, b = 1/196
Парный коэффициент корреляции rxy = 1/ (-196) * 78
Средняя ошибка аппроксимации: А = 196/46 + 4,6
Известно, что Fтабл. = 4,96, а Fфакт = 196/2 + 5
Определите коэффициент детерминации. Определите линейную модель через среднюю ошибку аппроксимации и F-критерий Фишера.
Решение:
Найдем коэффициенты парной линейной регрессионной модели:
а = 196/4 = 49
b = 1/196 = 0,0051
Получим уравнение регрессии:
y = 49 + 0,0051x + e,
Значит, с увеличением среднего денежного дохода на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,0051 %.
Линейный коэффициент парной корреляции
rxy = 1/ (-196) * 78 = -0,39
(связь умеренная, обратная)
Найдем коэффициент детерминации
rxy2 = (-0,39)2 = 0,158. Вариация результата на 15,8 % объясняется вариацией фактора x.
Средняя ошибка аппроксимации А = 196/46 + 4,6 = 8,86, что говорит о высокой ошибке аппроксимации (недопустимые пределы). В среднем расчетные значения отклоняются от фактических на 8,86 %.
Проверяем F-критерий Фишера. Для этого сравним Fтабл. и Fфакт.
Fтабл. = 4,96
Fфакт.=103
Fтабл. < Fфакт. (4,96<103), значит гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность с вероятностью 0,95.
Вывод: линейная парная модель плохо описывает изучаемую закономерность.
Задание 3
В табл. 2 приведены данные, формирующие цену на строящиеся квартиры в двух различных районах.