Контрольная работа: Паяные соединения. Технология магнитных дисков. Коммутационные устройства

Рис.4. Схема лазерного контроля паяных соединений

За счет этой системы удается контролировать около десяти паяных соединений в секунду, которые расположены на расстоянии 1,25 мм друг от друга.

2. Технология магнитных дисков (МД) является сложной: объединяет сотни операций, выполняемых на нескольких десятках единиц нестандартного технологического оборудования; многие параметры, режимы и условия ведения процессов изготовления МД являются производственными секретами фирм-изготовителей МД.

Наиболее часто основа жестких МД изготовляется из листового проката легких сплавов. Механические свойства используемых материалов существенно влияют на физико-механические и прочностные характеристики МД. Выбор материалов для изготовления основы МД весьма ограничен в связи с многообразием и противоречивостью предъявляемых к ним требований. После отказа от МД на основе чистого алюминия, стекла и керамики остановились на применении в качестве основы МД алюминиевых сплавов и листового проката сплавов других легких металлов, в частности магния.

Предпочтение в настоящее время отдается алюминиевым, а не магниевым сплавам, так как последние недостаточно однородны по химическому составу, имеют высокие значения коэффициента теплового расширения и нетехнологичны при обработке.

Основа жестких МД изготовляется из термообработанных листов алюминиевого сплава, подбираемого по ряду критериев и физических свойств. Лист должен быть изготовлен из сплава однородного мелкозернистого состава характеризуемого заданными значениями коэффициента теплового расширения, плотности, твердости, упругости и др.

После обработки на всех стадиях изготовления, которая могла повлечь за собой нарушение плоскостности основы диска, либо повлекла за собой генерацию в материале основы термомеханических напряжений, материал основы вновь неоднократно обрабатывается с целью доведения основы до состояния, удовлетворяющего жестким требованиям жестких МД сосредоточено лишь в нескольких зарубежных фирмах-гигантах: IBM (США), BASF (ФРГ), Pyral (Франция) и на ряде японских фирм.

Перед началом изготовления основы ее заготовку (листовой прокат алюминиевого сплава) проверяют на равнотолщинность, степень макро- и микродефектности, а также на удовлетворение требованиям по физико-механическим характеристикам.

Стадия изготовления основы жесткого диска включает: вырезание из листа алюминиевого сплава заготовок с размерами (наружным и внутренним диаметрами), находящимися в жестких «плюсовом» и «минусовом» допусках; механическую очистку поверхности заготовок; их химическую очистку; опрессовку при повышенной температуре с целью восстановления плоскостности и снятия механических напряжений, возникших в заготовке основы при ее вырезании из листа; химическую очистку; промывку; обточку до окончательных заданных размеров (величин наружного и внутреннего диаметров основы); шлифовку; полировку. Приведенный перечень основных технологических операций изготовления основы жесткого МД диска нуждается в пояснении. Во-первых, основа диска зеркально обрабатывается на станках, работающих без вибрации; обработанная поверхность должна отвечать 12-му классу шероховатости (параметр шероховатости ≤0,025 мкм). Во-вторых, химическая очистка поверхности основы диска от загрязнений ничем не напоминает тривиальное обезжиривание, известное в практике лакокрасочных производств. В нашем случае она включает технологические операции: обработку основы горячим растворителем, последующую обработку растворителем холодным, обработку перенасыщенными парами растворителей.

Основные параметры процесса:

- температура воды в ванне около 350К;

- удельное электросопротивление воды более 1 МОм∙см;

- время выдержки заготовки основы в теплой воде 1...30 с;

- скорость обдува основы горячим воздухом до 50 м/с при расходе 3...15 м/мин;

- температура воздуха около 380К.

На всех стадиях техпроцесса изготовления основы жестких МД осуществляется - пооперационный, как правило, количественный контроль режимов и условий выполнения операций и их результатов.

Совершенство технологического процесса приготовления ферролака, который и определяет технические показатели НМД, зависит от многих факторов: от свойств материалов, используемых в рецептурах ферролака; степени оптимальности этих рецептур; технического уровня используемого смесительного и размольного оборудования; режимов и условий ведения процесса приготовления ферролака и его нанесения на основу.

В состав ферролака для рабочего слоя жестких МД входят: смесь растворителей, ферропорошок, связующий высокополимер и функциональные добавки (прежде всего добавки, упрочняющие рабочий слой, улучшающие его электропроводность и полирующие рабочую поверхность). Материал запоминающей среды (ферропорошок) жесткого МД должен хорошо смачиваться растворителями; иметь хорошую сыпучесть, игольчатую форму микрочастиц при высокой степени их однородности по размерам, средние размеры 0,1...0,2 мкм.

Порядок выполнения технологических операций в процессе приготовления ферролака для жестких МД следующий: компоненты, входящие в рецептуру лака, смешивают между собой в строго определенных массовых соотношениях и определенной последовательности, затем тщательно перемешивают; ферропорошок г-Fe2 O3 диспергируют в пленкообразующем, для чего рецептуру лака перегружают из смесителя в бисерную мельницу; приготовленные ферролак с помощью специальных разбавителей доводят до поливной вязкости и тщательно фильтруют до полного удаления агломератов частиц г-Fe2 O3 и инородных примесей; затем ферролак подвергают тщательной дезаэрации и, наконец, подают на полив.

Готовый к нанесению на основу ферролак должен представлять собой не что иное как полностью микрокапсулированную пленкообразующим описанными методами систему микрочастиц ферропорошка.

Нанесение ферролакового рабочего слоя на основу МД производится с помощью центрифуги. В конструкцию центрифуги входят следующие основные узлы: держатель основы МД, смонтированный на горизонтально расположенном валу и вращаемый прецизионным электродвигателем с бесступенчатой регулировкой скорости вращения; форсунка, вращающаяся над поверхностью основы диска с постоянной скоростью (выходное сопло форсунки смонтировано на подвижной каретке, чем обеспечивается нанесение ферролака на всю поверхность основы); ряд вспомогательных элементов и приспособлений (прецизионный дозатор ферролака; автомат, регулирующий скорость пространственного перемещения форсунки, обойма для крепления основы диска, камера-ловушка, отводящая избыток ферролака, сбрасываемого с поверхности основы в процессе его нанесения).

Сушка и отверждение рабочего слоя, как и условия их проведения, определяются типами используемых растворителей, веществами связующего высокополимера, пластификатора и отвердителя пластификатора, соотношением между компонентами органической природы в составе ферролаковой композиции, а также соотношением между органической частью рецептуры и ферропорошком.

«Интегральными» признаками оптимальности выбранных температурных и иных условий сушки ферролакового рабочего слоя являются достижимая адгезионная и когезионная прочность рабочего слоя и его твердость.

Нанесение защитного покрытия на поверхности рабочего слоя жестких МД необходимо для обеспечения их эксплуатационной надежности, так как предусматриваемое устройством дисковых ЗУ отсутствие непосредственного контакта рабочей поверхности дисков с магнитными головками и другие меры предосторожности все же не исключают упомянутый контакт полностью.

Материалами, потенциально пригодными для использования в качестве защитных покрытий в жестких МД, представляются тонкие полимерные пленки, некоторые масла, а также силиконовые жидкости.

Толщина защитного покрытия на поверхности рабочего слоя составляет 0,2...0,6 мкм. Это покрытие подается тонкой струей на поверхность МД сначала от центра к периферии, а затем в обратном направлении, при нарастающей частоте вращения диска; затем растворитель удаляется из защитного слоя обдувом поверхности струей теплого воздуха.

Важной доводочной операцией в процессе изготовления жесткого МД является размерное шлифование рабочего слоя, наносимого с плюсовым допуском по толщине. Эта операция выполняется в специальной шлифовальной камере для плоскопараллельного шлифования отвержденного ферролакового слоя (до нанесения на поверхность ферролака защитного слоя). Обязательны операции: технология размерного шлифования; посадка обрабатываемого МД на вал с прижимом, расположенный с валом шлифовального круга; обработка поверхности рабочего слоя струей шлифовальной жидкости; профилированное (коническое) шлифование; обработка сошлифованной поверхности моющей жидкостью под давлением; сушка МД; сухая полировка поверхности рабочего слоя; передача МД на участок монтажа пакетов.

Режимы и условия шлифовки и полировки (т. е. размерной доводки) рабочего слоя жестких МД относятся к числу важнейших производственных секретов фирм-изготовителей НМД. Известно только, что в процессе шлифования рабочего слоя абразивный инструмент с малым шагом перемещается радиально, возвратно-поступательно, при одновременном вращении диска. Размерная доводка МД требуется потому, что нанесение ферролакового рабочего слоя производится центрифугированием. Эта вынужденная операция в технологии жестких МД оказывается источником различных дефектов рабочего слоя (выпадения, снижение достоверности записи информации, повышение уровня шумов и т. д.); микрошероховатость поверхности рабочего слоя, свойства используемого ферропорошка и другие факторы оказывают влияние как на информационную емкость дисков, так и на достоверность записи информации на них.

К-во Просмотров: 227
Бесплатно скачать Контрольная работа: Паяные соединения. Технология магнитных дисков. Коммутационные устройства