Контрольная работа: Подготовка электронных документов в MS Word

Учитывая, что А-1 ×А=I (где I – единичная матрица), а IX=X, получим выражение для поиска вектора решения

X= А-1 В

Значит, для получения вектора решения СЛАУ X необходимо получить матрицу, обратную матрице коэффициентов СЛАУ, и умножить ее на вектор свободных членов СЛАУ B. Для обращения квадратной матрицы в MS Excel существует функция =МОБР(левый_верхний_элемент _исходной_матрицы: правый_нижний_элемент_исходной_матрицы). Для умножения обратной матрицы коэффициентов СЛАУ на вектор свободных членов воспользуемся функцией =МУМНОЖ(левый_верхний_элемент _исходной_матрицы: правый_нижний_элемент_исходной_матрицы; верхний_элемент_вектора: нижний_элемент_вектора). Решение СЛАУ из трех уравнений на основе методов линейной алгебры в MS Excel, входящего в состав интегрированного пакета Microsoft Office 2003 представлено на рис. 1.

В строках с 1 по 22 представлено условие задачи и принятые обозначения. В ячейках (B24:E27) реализуется функция обращения матрицы коэффициентов СЛАУ с помощью функции =МОБР(B9:E12). Функцию обращения матрицы возможно создать, используя мастер формул. Для этого необходимо выделить ячейки (B24:E27) и щелкнуть по пиктограмме MS Excel , за тем в группе “Математические” выбрать функцию МОБР и нажать кнопку “OK”. После появления окна “Аргументы функции” выделить (при нажатой левой кнопки манипулятора мышь) элементы исходной матрицы коэффициентов СЛАУ (ячейки (B9:E12)) и нажать кнопку “OK”.

Рис. 3.1. Решение СЛАУ на основе методов линейной алгебры

При закрытии окна “Аргументы функции” в выделенной области (ячейках (B24:E27)) для обратной матрицы сформируется только первый элемент в первой строке. Для формирования остальных элементов обратной матрицы следует нажать клавишу F2, а за тем при одновременно нажатых клавишах Shift и Ctrl нажать клавишу Enter. В результате в ячейках (B24:E27) образуется матрица, обратная матрице коэффициентов СЛАУ.

Теперь необходимо скопировать матрицу, обратную матрице коэффициентов СЛАУ (ячейки (B24:E27)) в ячейки (B29:E32), а вектор свободных членов СЛАУ (ячейки (B14:B17)) в ячейки (I29:I32).

Алгоритм процедуры копирования представлен в табл. 1.

Табл. № 1

Алгоритм копирования матрицы, обратной матрице коэффициентов СЛАУ и вектора свободных членов СЛАУ

№п/п Щелкнуть левой кнопкой манипулятора “мышь” по ячейке Набрать в строке формул … и нажать Enter
Копировать матрицу (ячейки B24:E27)) в ячейки (B29:E32)
1. B24 =B29
2. B25 =B30
3. B26 =B31
4. B27 =B32
5. C24 =C29
6. C25 =C30
7. C26 =C31
8. C27 =C32
9. D24 =D29
10. D25 =D30
11. D26 =D31
12. D27 =D32
Копировать вектор свободных членов СЛАУ B (ячейки B14:B17)) в ячейки (G29:G32)
1. B14 =G29
2. B15 =G30
3. B16 =G31
4. B17 =G32

Процедура копирования позволяет при изменении исходных данных СЛАУ (матрицы коэффициентов СЛАУ и вектора свободных членов СЛАУ) в ячейках (I29:I32) получать вектор решения СЛАУ, используя функцию умножения матриц =МУМНОЖ(B29:E32;G29:G32). Функцию умножения матриц возможно создать, используя мастер формул. Для этого необходимо выделить ячейки (I29:I32) и щелкнуть по пиктограмме MS Excel , за тем в группе “Математические” выбрать функцию МУМНОЖ и нажать кнопку “OK”. После появления окна “Аргументы функции” выделить (при нажатой левой кнопки манипулятора “мышь”) элементы матрицы, обратной матрице коэффициентов СЛАУ (ячейки (B29:E32)), щелкнуть левой кнопкой манипулятора “мышь” в визуальном компоненте после метки с заголовком “Массив2”, выделить (при нажатой левой кнопки манипулятора “мышь”) элементы вектора свободных членов СЛАУ (ячейки (G29:G32)) и нажать кнопку “OK”. При закрытии окна “Аргументы функции” в выделенной области (ячейках (I29:I32)) для вектора решения СЛАУ сформируется только первый элемент вектора. Для формирования остальных элементов вектора решения СЛАУ следует нажать клавишу F2, а за тем при одновременно нажатых клавишах Shift и Ctrl нажать клавишу Enter. В результате в ячейках (I29:I32) образуется вектор решения СЛАУ.

Формулы на рис. 3.1 получены в редакторе формул MS Equation 3.0, поставляемом совестно с интегрированным пакетом прикладных программ Microsoft Office 2003.

Лист MS Excel, представленный на рис. 1 позволяет получить вектор решения для любой СЛАУ, состоящей из трех уравнений. Описанная технология решения СЛАУ легко позволяет решить задачу любой размерности (для любого количества уравнений в СЛАУ).

3.2 Решение СЛАУ, используя метод “Поиск решения…” MS Excel

Рассмотрим использование метода "Поиск решения..." на исходных данных представленных на рис. 1.

Для использования метода "Поиск решения..." необходимо свести задачу решения СЛАУ к задаче оптимизации. Введем целевую функцию вида

, (4)

где bi – i-й элемент вектора свободных членов СЛАУ;

ai , j – i, j-й элемент матрицы коэффициентов СЛАУ;

xj – j-й элемент вектора решения СЛАУ;

n – количество уравнений в СЛАУ.

Ограничений на вектор решения X накладывать не будем.

Тогда математически задачу поиска вектора решения СЛАУ X можно записать

. (5)

Подобная задача (5) легко решается использованием метода "Поиск решения..." MS Excel (см. рис. 3.2) следующим образом:

- обнуляем ячейки (B24:B27), в которых будем формировать вектор решения СЛАУ X;

для ячейки B29 в строке формул запишем

=(B14-B9*B24-B10*B25-B11*B26-B12*B27)^2+(B15-C9*B24-C10*B25-C11*B26-C12*B27)^2+(B16-D9*B24-D10*B25-D11*B26-D12*B26)^2+(B17-E9*B24-E10*B25-E11*B26-E12*B27)^2

правую часть целевой функции (4) для исходных данных нашей задачи;


К-во Просмотров: 155
Бесплатно скачать Контрольная работа: Подготовка электронных документов в MS Word