Контрольная работа: Построение графиков функций. Решение нелинейных уравнений и систем нелинейных уравнений
В этом окне
1.на Вкладке Ось X - Y установитьпереключатель Пересечение
2.на Вкладке Трассировки можно установить цвет и толщину линии
Если щелкнуть по графику (появятся маркеры вокруг графика), то методом протягивания в нужном направлении можно изменить размеры графика.
Так выглядит график после форматирования
Рис. 1.2
Теоретическая часть
Блок уравнений и неравенств, требующих решения, записывается после ключевого слова Given (дано ). При записи уравнений используется знак логического равенства = , кнопка находится в Палитре Boolean.
Заканчивается блок решения вызовом функции Find(найти ). В качестве аргументов этой функции – искомая величина. Если их несколько (при решении систем уравнений, то искомые неизвестные должны быть перечислены через запятую).
Всякое уравнение с одним неизвестным может быть записано в виде, f(x)=0,
где f(x) – нелинейная функция. Решение таких уравнений заключается в нахождении корней, т.е. тех значений неизвестного x , которые обращают уравнение в тождество. Точное решение нелинейного уравнения далеко не всегда возможно. На практике часто нет необходимости в точном решении уравнения. Достаточно найти корни уравнения с заданной степенью точности.
Процесс нахождения приближенных корней уравнения состоит из двух этапов:
1 этап. Отделение корней, т.е. разбиения области определения функции f(x), на отрезки, в каждом из которых содержится только один корень уравнения.
2 этап.Уточнение приближенных корней уравнения, т.е. доведение их до заданной степени точности.
Практическая часть
Задание №1
Постановка задачи:
Найти корень уравнения x 3 - x 2 =2 с точностью Е=0,00001
Приведем заданное уравнение к виду f ( x ) =0
x 3 - x 2 -2 =0 f ( x ) = x 3 - x 2 -2
Выполнение задания № 1
1 этап – отделение корней
Создать функция пользователя | |
Создать ранжированную переменную x | |
Построить график f(x) |
Из графика видно, что приближенное значение x =1.5 (то значение x, при котором функция пересекает ось x)
2 этап – уточнение приближенного значения корня
Специальный вычислительный блок имеет следующую структуру | |
Задают начальное значение x (из графика – приближенное) | |
TOL– Системная переменная, которой присваивается значение требуемой точности 0.00001 |
Так как требуемая точность вычисления 0.00001, то дважды щелкнув по результату, необходимо отформатировать результат (задать нужное количество десятичных знаков).
Given | Given (дано ) – ключевое слово, открывающее блок решения |
x3 -x2 –2 = 0 | Так записывается уравнение. При записи уравнений в решающем блоке используют знак логического равенства = , которому соответствует кнопка Палитры |
Вызвать функции Find, которая в качестве аргументов должна содержать искомую величины (если их несколько, то они перечисляются через запятую) |