Контрольная работа: Природа, источники, механизм взаимодействия с веществом, особенности воздействия на организм человека гамма-излучений

Свинец используется для защиты в виде отливок (очехлованных стальными листами), листов, дроби. Из имеющихся дешевых материалов свинец обладает наиболее высокими защитными свойствами от γ-излучения. Его целесообразно использовать при необходимости ограничения размеров и массы защиты. Применение свинца ограничивается низкой температурой плавления (600 К). Защитные материалы вольфрам, тантал могут использоваться в горячих зонах, в которых применение свища исключается. Использовать эти металлы для защиты промышленных реакторов нецелесообразно, так как они крайне дороги.

Кадмий хорошо поглощает нейтроны с энергией меньше 0,5 эВ. Листовой кадмий толщиной 0,1 см снижает плотность потока тепловых нейтронов в 109 раз. При этом возникает захватное γ-излучение с энергией до 7,5 МэВ. Кадмий не обладает достаточно хорошими механическими свойствами. Поэтому чаще применяют сплав кадмия со свинцом, который наряду с хорошими защитными свойствами от нейтронного и γ-излучений имеет лучшие механические свойства чем свойства чистого кадмия.

Бетон является основным материалом для защиты от излучений, если масса и размер защиты не ограничиваются другими условиями. Он состоит из заполнителей, связанных между собой цементом. В состав цемента входят окислы кальция, кремния, алюминия, железа и легкие ядра, которые интенсивно поглощают γ-излучение и замедляют быстрые нейтроны в результате упругого и неупругого столкновений. Поглощающая способность γ-излучения зависит от плотности бетона, которая может составлять 2,1 — 6,6 т/м3 . Наибольшая плотность бетона при использовании заполнителя- железного скрапа (стальных шариков, проволоки, обрезков стального лома), наименьшая — при использовании песка и гравия. Конструкция бетонной защиты может быть монолитной (для больших реакторов) или состоять из отдельных блоков (небольших реакторов). Для снижения выхода захватного γ-излучения в бетон вводят вместо заполнителя до 3% B4 C.

Основным показателем защитных свойств материала по отношению к γ-излучению служит линейный коэффициент ослабления плотности (мощности дозы) γ-излучения. Чем выше плотность материала тем больше μ (коэффициент ослабления), тем более высокими защитными свойствами обладает материал. Защитные свойства материалов улучшаются в результате введения в них тяжелого компонента (железа, бария и др.). γ-излучение ослабляется за счет увеличения плотности материала.

2.5 Индивидуальная аварийная дозиметрия гамма-излучения

Дозы γ-излучения наиболее точно измеряют радиотермо- (РТЛ) и радиофотолюминесцентными (РФЛ) и фотопленочными дозиметрами.

В лабораторных условиях фотопленочные дозиметры позволяют измерять дозу γ-излучения с допустимой погрешностью,а их практическое применение для индивидуального аварийного контроля затруднительно. Погрешность возникает из-за различия в условиях хранения и ношения. К недостаткам относятся энергетическая зависимость чувствительности, необходимость процедуры проявления и денситометрирования, чувствительность к климатическим условиям. Фотопленки в индивидуальной аварийной дозиметрии вытесняются радиофото- и радиотермолюминесцентными дозиметрами. Принцип действия РФЛ-дозиметров - на испускании видимого света при ультрафиолетовом возбуждении облученных твердых веществ. В дозиметрах используются метафосфатные стекла, активированные серебром. Если при радиофотолюминесценции созданные ионизирующим излучением центры захвата сохраняются после ультрафиолетового возбуждения, то при радиотермолюминесценции происходит рекомбинация электронов с дырками, что приводит к разрушению центров захвата. Радиофотолюминесцентные дозиметры допускают многократное определение показаний без потери информации, а радиотермолюминесцентные после определения показаний могут быть использованы для нового облучения. Для регистрации РТЛ люминофор помещают на нагревательное устройство перед фотоумножителем и измеряют зависимость интенсивности свечения от температуры или времени нагрева. Желателен люминофор с линейной зависимостью интенсивности РТЛ от дозы, нечувствительный к освещению, температурным и климатическим факторам. Выход РТЛ должен быть большим, а спектр удаленным от собственного свечения нагревательного устройства и соответствовать спектральной чувствительности используемого фотоумножителя. Учитывая всё это, в аварийной дозиметрии широко используют три типа термолюминофоров: фтористый литий, фтористый кальций и термолюминесцирующие стекла. На АЭС используются комплекты детекторов индивидуального дозиметрического контроля на основе LiF,которые могут регистрировать дозы аварийного облучения. Преимущество LiF связано с небольшим эффективным атомным номером, равным 8,14 и близким к эффективному атомному номеру мышечной ткани. По этой причине у фтористого лития незначительная зависимость дозовой чувствительности от энергии фотонов. После облучения в дозе более 100 рад фтористый литий необходимо подвергать регенерации путем длительной термообработки для снятия радиационных дефектов.LiF допускает многократное применение (до 100 раз) без изменения чувствительности при дозе до 1000 рад. Эффективный атомный номер CaF2 выше, чем у LiF, поэтому его чувствительность сильнее зависит от энергии фотонов. Хотя такие дозиметры отличаются стабильными характеристиками, высокой точностью и большим сроком службы, но они сложны в изготовлении и довольно громоздки, особенно если речь идет об их объединении с индивидуальными дозиметрами нейтронов в общий аварийный дозиметр γ - n-излучения. В качестве термолюминесцентных дозиметров используют стёкла. Алюмофосфатные стекла стали основой метода термолюминесцентной дозиметрии ИКС. Требования, предъявляемые к термолюминофорам, удается удовлетворить подбором состава стекла, выбором активатора, разработкой технологии изготовления стекла. Без активатора (лучшим оказался марганец) собственная радиолюминесценция у стекла невелика. Так как эффективный атомный номер алюмофосфатного стекла равен около12, что значительно больше, чем у биологической ткани, то в области низких энергий фотонов дозиметры обладают значительным ходом с жесткостью. Отношение дозовой чувствительности к нейтронам и аналогичной чувствительности к γ-излучению для стекол с литием равно около 100. Относительная чувствительность стекол к быстрым нейтронам по сравнению с γ-излучением для нейтронов с энергией ниже 5 МэВ не превышает 3—5%. Хотя по своим временным характеристикам термолюминесцирующие стекла уступают таким люминофорам, как LiF или CaF2 ,но они являются довольно стабильными к климатическим и температурным условиям. Они устойчивы к коррозии, тепловым ударам при быстром нагреве и охлаждении. Показания дозиметров в пределах ±3% не зависят от температуры при облучении в интервале от - 20 до + 600 C.На основе алюмофосфатных стекол, промышленному выпуску которых присвоена марка ИС-7, создан комплект индивидуальных аварийных дозиметров γ-излучения ИКС-А и индивидуальный дозиметр кожной дозы β- и γ-излучений ИКС. У дозиметра ИКС-А полный диапазон по тканевой дозе γ-излучения от 0,5 до 1000рад разбит на три поддиапазона от 0,05 до 10 рад, от 10 до 100 рад и от 100 до 1000 рад. Основная погрешность измерения дозы не больше ±15%.

Рис .9.1. Индивидуальные дозиметры γ-излучения ИКС-А:

а — аварийные; б — многократного пользования; β — экспериментальные: 1 — крышка; 2 — свинцовый фильтр; 3 — держатель стеклянной пластины; 4 — стеклянная пластина; 5 — крепежное кольцо; 6 — пружина; 7 — фильтр го алюминия; 8 - свинцовый фильтр; 9 — основание кассеты; 10 — фильтр го алюминия;

11 — прокладка из резины.


2.6 Особенности воздействия на организм человека гамма-излучений

В соответствии с Законом Украины «Об охране окружающей природной среды» при эксплуатации промышленных или иных объектов должна обеспечиваться экологическая безопасность людей, рациональное использование природных ресурсов, соблюдение нормативов вредного воздействия на окружающую природную среду. При этом должны предусматриваться улавливание, утилизация, обезвреживание вредных веществ и отходов либо полная их ликвидация, исполнение других требований относительно охраны окружающей природной среды и здоровья людей. Как известно, гамма-лучи обладают наибольшей проникающей способностью (по сравнению с альфа и бета-лучами.) Интенсивность поглощения γ-лучей увеличивается с ростом атомного номера вещества поглотителя. Но и слой свинца толщиной в сантиметр не является для них непреодолимой преградой. При прохождении через такую пластину их интенсивность убывает лишь вдвое. Скорость распространения γ-лучей в вакууме около 300000 км/сек. Излучение радиоактивных веществ оказывают сильнейшее воздействие на все живые организмы. Даже сравнительно слабого излучения, энергия которого при полном поглощении повысила бы температуру тела всего лишь на 0,001°С, оказывается достаточно, чтобы нарушить жизнедеятельность клеток организма. Живая клетка - это сложный механизм, не способный продолжать нормальную жизнедеятельность даже при малых повреждениях отдельных его участков. Излучения же и малой интенсивности способны нанести клетке такие повреждения. В результате при большой дозе излучения все живые организмы погибают. Опасность излучений усугубляется тем, что они не вызывают никаких болевых ощущений даже при смертельных дозах. Наиболее чувствительны к излучениям ядра клеток, особенно клеток, которые быстро делятся. Поэтому в первую очередь излучения поражают в организме костный мозг, из-за чего нарушается процесс образования крови. Далее наступает поражение клеток пищеварительного тракта и других органов. Сильное влияние облучение оказывает на наследственность. Внешнее облучение всего тела, с учетом его вклада в индивидуальные и коллективныедозы является основным на АЭС. Его источники: это γ-излучение ядерного реактора,технологических контуров, оборудования с радиоактивными средами и любые поверхности,загрязненные радиоактивными веществами. Существенно меньший вклад во внешнееоблучение персонала АЭС вносят нейтронное и β-излучение. При облучении может развиться лучевая болезнь-заболевание, развивающееся в результате гибели преимущественно делящихся клеток организма под влиянием кратковременного (до нескольких суток) воздействия на значительные области тела радиации. В патогенезе острой лучевой болезни определяющую роль играет гибель клеток, прежде всего делящихся, однако погибают и покоящиеся клетки, гибнут лимфоциты. Лимфопения является одним из ранних и важнейших признаков острого лучевого поражения. Фибробласты организма оказываются высокоустойчивыми к воздействию радиации. После облучения они начинают бурный рост, что в очагах значительных поражений способствует развитию тяжелого склероза. К важнейшим особенностям острой лучевой болезни относится строгая зависимость ее проявлений от поглощенной дозы. В своем развитии болезнь проходит несколько этапов. В первые часы после облучения появляется первичная реакция (рвота, лихорадка, головная боль непосредственно после облучения). Через несколько дней (тем раньше, чем выше доза облучения) развивается опустошение костного мозга, в крови - агранулоцитоз, тромбоцитопения. Появляются разнообразные инфекционные процессы, стоматит, геморрагии. Между первичной реакцией и разгаром болезни при дозах облучения менее 500-600 рад отмечается период внешнего благополучия, но чисто внешние проявления болезни не определяют истинного положения. Целесообразно выделять четыре стадии острой лучевой болезни: легкую, средней тяжести, тяжелую и крайне тяжелую. К легкой относятся случаи относительно равномерного облучения в дозе от 100 до 200 рад, к средней - от 200 до 400 рад, к тяжелой - от 400 до 600 рад, к крайне тяжелой - свыше 600 рад. При облучении в дозе менее 100 рад говорят о лучевой травме. Дозу редко устанавливают физическим путем, как правило, это делают с помощью биологической дозиметрии. Разработанная в нашей стране специальная система биологической дозиметрии дозволяет в настоящее время не только безошибочно устанавливать сам факт переоблучения, но и надежно (в пределах описанных степеней тяжести острой лучевой болезни) определять поглощенные в конкретных участках человеческого тела дозы радиации. Это положение справедливо для случаев непосредственного, т. е. в течение ближайших после облучения суток, поступления пострадавшего для обследования. Однако даже по прошествии нескольких лет после облучения можно не только подтвердить этот факт, но и установить примерную дозу облучения по хромосомному анализу лимфоцитов периферической крови и лимфоцитов костного мозга. Типичное проявление острой лучевой болезни - поражение кожи и ее придатков. Выпадение волос - один из самых ярких внешних признаков болезни, хотя он меньше всего влияет на ее течение. Окончательное (без восстановления) выпадение волос на голове происходит при однократной дозе облучения выше 700 рад. Кожа имеет также неодинаковую радиочувствительность разных областей. Наиболее чувствительны области подмышечных впадин, паховых складок, локтевых сгибов, шеи. При высоких дозах (начиная с дозы 1600рад) появляются пузыри. При дозах свыше 2500 рад первичная эритема сменяется отеком кожи, появляются пузыри, наполненные серозной жидкостью. Хроническая лучевая болезнь представляет собой заболевание, вызванное повторными облучениями организма в малых дозах, суммарно превышающих 100 рад. Развитие болезни определяется не только суммарной дозой, но и ее мощностью, т. е. сроком облучения, в течение которого произошло поглощение дозы радиации в организме. Плохой контроль за источниками радиации, нарушение персоналом техники безопасности в работе с рентгенотерапевтическими установками приводили к появлению случаев хронической лучевой болезни.

Четкая организация работы службы радиационной безопасности в условиях нормальной эксплуатации является залогом безопасности всех видов работ и в других режимах, в том числе в аварийных режимах эксплуатации АЭС.

Облучение живых организмов может вызывать и определённую пользу. Быстро размножающиеся клетки в злокачественных (раковых) опухолях более чувствительны к облучению, чем нормальные. На этом основано подавление раковой опухоли γ-лучами радиоактивных препаратов, которые для этой цели более эффективны, чем рентгеновские лучи, уже применявшиеся ранее. Вызываемые облучением мутации могут приводить и к желательным изменениям в свойствах растений и животных. На этом основано новое направление в селекции растений и микроорганизмов- радиоселекция. Методами радиоселекции созданы хозяйственно ценные формы яровой пшеницы, овса, ячменя, гороха и других культур.


Заключение

В данном реферате были рассмотрены вопросы воздействия гамма-излучений на человека. Гамма–излучение – электромагнитное излучение с длиной волны < 0,1 нм, возникающее при распаде радиоактивных ядер, переходе ядер из возбужденного состояния в основное, при взаимодействии быстрых заряженных частиц с веществом, аннигиляции электронно-позитронных пар. Для гамма-излучения характерны в основном три вида взаимодействия с веществом:

1. фотоэффект;

2.комптон–эффект

3.образование электронно-позитронных пар

Источники γ-излучения на АЭС это:

γ-излучение ядерного реактора, технологических контуров,

оборудования с радиоактивными средами и любые поверхности,загрязненные радиоактивными веществами.

γ-излучение отрицательно влияет на организм человека, крайним проявлением чего является лучевая болезнь.


Литература

1. Мякишев Г.Я. Буховцев Б.Б. Физика. Москва.Просвещение.1976,366с.

2. Популярная медицинская энциклопедия. Гл.ред. Б.В. Петровский. Москва. Советская энциклопедия.1987.704с.

3. Борнников В.К., Волошко В.П., Копчинський Г.А., Штеййнберг Н.А. Состояние и проблемы ядерной енергетики Украины // Вісник інженерної академії України. – 1998 . - №2

К-во Просмотров: 168
Бесплатно скачать Контрольная работа: Природа, источники, механизм взаимодействия с веществом, особенности воздействия на организм человека гамма-излучений