Контрольная работа: Productivity Growth
Climate. Measurements taken in Hawaii in the late 1950s indicated that carbon dioxide (CO2 ,) was increasing in the atmosphere. Beginning in the late 1960s, computer model simulations indicated possible changes in temperature and precipitation that could occur due to human-induced emission of CO2 and other "greenhouse gases" into the atmosphere. By the early 1980s, a fairly broad consensus had emerged in the climate change research community that energy production and consumption from fossil fuels could, by 2050, result in a doubling of the atmospheric concentration of CO2 , a rise in global average temperature by 2. 5 to 4. 5 C (2. 7 to 8. 0 F) and a complex pattern of worldwide climate change (Ruttan, 2006, pp. 515-520).
Since the mid-1980s, a succession of studies has attempted to assess how an increase in the atmospheric concentration of greenhouse gases could affect agricultural production through three channels: a) higher CO2 concentrations in the atmosphere may have a positive "fertilizer effect" on some crop plants (and weeds); b) higher temperatures could result in a rise in the sea level, resulting in inundation of coastal areas and intrusion of saltwater into groundwater aquifers; and c) changes in temperature, rainfall and sunlight may also alter agricultural production, although the effects will vary greatly across regions. Early assessments of the impact of climate change on global agricultural suggested a negative annual impact in the 2 to 4 percent range by the third decade of this century (Parry, 1990). More recent projections are more optimistic (Mendelsohn, Nordhaus and Shaw, 1994; Rosenzweig and Hillel, 2003). The early models have been criticized for a "dumb farmer" assumption—they did not incorporate how farmers would respond to climate change with different crops and growing methods. Efforts to incorporate — how public and private suppliers of knowledge and technology might adjust to climate change are just beginning (Evenson, 2003). But even the more sophisticated models have been Unable to incorporate the synergistic interactions among climate change, soil loss and degradation, ground and surface water storage and the incidence of pests and pathogens. These interactive effects could combine into a significantly larger burden on growth in agricultural production than the effects of each constraint considered separately. One thing that is certain is that a country or region that has not acquired substantial agricultural research capacity will have great difficulty in responding to anticipated climate change impacts.
Scientific and Technical Constraints The achievement of sustained growth in agricultural production over the next half century represents at least as difficult a challenge to science and technology development as the transition to a science-based system of agricultural production during the twentieth century. In assessing the role of advances in science and technology to release the several constraints on growth of agricultural production and productivity, the induced technical change hypothesis is useful. To the extent that technical change in agriculture is endogenous, scientific and technical resources will be directed to sustaining or enhancing the productivity of those factors that are relatively scarce and expensive. Farmers in those countries who have not yet acquired the capacity to invent or adapt technology specific to their resource endowments will continue to find it difficult to respond to the growth of domestic or international demand.
In the 1950s and 1960s, it was not difficult to anticipate the likely sources of increase in agricultural production over the next several decades (Ruttan, 1956; Schultz, 1964; Millikan and Hapgood, 1967). Advances in crop production would come from expansion in area irrigated, from more intensive application of improved fertilizer and crop protection chemicals and from the development of crop varieties that would be more responsive to technical inputs and management.
Advances in animal production would come from genetic improvements and advances in animal nutrition. At a more fundamental level, increases in crop yields would come from genetic advances that would change plant architecture to make possible higher plant populations per hectare and would increase the ratio of grain to straw in individual plants. Increases in production of animals and animal products would come about by genetic and management changes that would decrease the proportion of feed devoted to animal maintenance and increase the proportion used to produce usable animal products.
I find it much more difficult to tell a convincing story about the likely sources of increase in crop and animal production over the next half-century than I did a half-century ago. The ratio of grain to straw is already high in many crops, and severe physiological constraints arise in trying to increase it further.
There are also physiological limits to increasing the efficiency with which animal feed produces animal products. These constraints will impinge most severely in areas that have already achieved the highest levels of output per hectare or per animal unit — in western Europe, north America and east Asia. Indeed, the constraints are already evident. The yield increases from inciemental fertilizer application are falling. The reductions in labor input from the use of larger and more powerful mechanical equipment are declining as well. As average grain yields have risen from the 1 to 2 metric tons per hectare range to the 6 to 8 metric tons per hectare range in the most favored areas, the share of research budgets devoted to maintenance research — the research needed to maintain existing crop and animal productivity levels — has risen relative to total research budgets (Plucknet and Smith, 19S6). Cost per scientist year has been rising faster than the general price level (Pardey, Craig and Hallaway, 1989; Huffman and Evenson, 1993).
I find it difficult to escape a conclusion that both public and private sector agricultural research, in those countries that have achieved the highest levels of agricultural productivity, has begun to experience diminishing returns.
Perhaps advances in molecular biology and genetic engineering will relieve the scientific and technical constraints on the growth of agricultural production. In the past, advances in fundamental knowledge have often initiated new cycles of research productivity (Evenson and Kislev, 1975). Transgenetically modified crops. particularly maize, soybeans and cotton, have diffused rapidly since they were first introduced in the mid-1990s. Four countries — United States, Argentina, Canada and China—accounted for 99 percent of the 109 million acres of transgenic crop area in 2000 (James, 2000).
The applications that are presently available in the field are primarily in the area of plant protection and animal health. Among the more dramatic examples is the development of cotton varieties that incorporate resistance to the cotton bollworm. The effect has been to reduce the application of chemical control from 8 to 10 to 1 to 2 spray applications per season (Falck-Zepeda et al., 2000).
These advances are enabling producers to push crop and animal yields closer to their genetically determined biological potential. But they have not yet raised biological yield ceilings above the levels that that have been achieved by researchers employing the older methods based on Mendelian genetics (Ruttan, 1999).
Advances in agricultural applications of genetic engineering in developed countries will almost certainly be slowed by developed country concerns about the possible environmental and health impacts of transgenetically modified plants and foods. One effect of these concerns has been to shift the attention of biotechnology research effort away from agricultural applications in favor of industrial and pharmaceutical applications (Committee on Environmental Impact Associated with Commercialization of Transgenic Plants, 2002, pp. 221-229). This shift will delay the development of productivity-enhancing biotechnology applications and agricultural development in less developed economies.
I find it somewhat surprising that it is difficult for me to share the current optimism about the dramatic gains to be realized from the application of molecular genetics and genetic engineering. Some students of this subject have presented more optimistic perspectives (Waggoner, 1997; Alston et al. 2007, p. 77; Rungc et al., 2001). But I am skeptical that the new genetics technologies, although undoubtedly powerful, will or can overcome the long-term prospect of diminishing returns to research on agricultural productivity.
Perspective
What are the implications of the resource and environmental constraints, the scientific and technical constraints, and the institutional constraints on agricultural productivity growth over the next half-century? In those countries and regions in which land and labor productivity are already at or approaching scientific and technical frontiers, it will be difficult to achieve growth in agricultural productivity comparable to the rates achieved over the last half-century (Pingali, Moya and Velasco, 1990; Reilly and Fuglic, 1998; Pingali and Heisey, 2001). But in most of these countries at the technological frontier, the demand for food will rise only slowly. As a result, these countries, except perhaps those that are most land constrained, will have little difficulty in achieving rates of growth in agricultural production that will keep up with the slowly rising demand for food. Several of the countries near the technological frontier, particularly in east Asia, will find it economically advantageous to continue to import substantial quantities of animal feed and food grains (Rosegrant and Hazel, 2000).
For those countries in which land and labor productivity levels are furthest from frontier levels, particularly those in sub-Saharan Africa, opportunities exist to enhance agricultural productivity substantially. Countries that are laud constrained, such as India, can be expected to follow a productivity growth path that places primary emphasis on biological technology. In contrast, Brazil, which is still involved in expanding its agricultural land frontier while confronting crop yield constraints in its older agricultural regions, can be expected to follow a more balanced productivity growth path. Most of the poor countries or regions that find it advantageous to follow a biological technology path will have to invest substantially more than in the past to acquire a capacity for agricultural research and technology transfer. These investments will include general and technical education, rural physical infrastructure and building appropriate research and technology transfer institutions. Moreover, gains in labor productivity will depend on the rate of growth in demand for labor in the nonfarm sectors of the economy, which in turn create the incentives for substituting of mechanical technology for labor in agricultural production. If relatively land abundant countries, in sub-Saharan Africa, for example, fail to develop a strong intersector labor market in which workers can move from rural agricultural jobs to urban manufacturing and service jobs, they will end up following an east Asian land saving biological technology path.
I find it more difficult to anticipate the productivity paths that will be followed by several other regions. The countries of the former USSR have in the рам followed a trajectory somewhat similar to North America. If they recover from recent stagnation, these countries may resume their historical trajectory. The trajectories that will be followed by west Asia, north Africa and other arid regions are highly uncertain. Very substantial gains in water productivity will be required to realize gains in land productivity in these areas, and vein substantial growth in nonagricultural demand for labor will be required to realize the substantial gains in labor productivity that would enable them to continue along the intermediate technology trajectory that has characterized the countries of southern Europe. The major oil-producing countries will continue to expand their imports of food and feed grains. If the world should move toward more open trading arrangements, a number of tropical or semitropical developing countries would find it advantageous to expand their exports of commodities in which their climate and other resources give them a comparative advantage and import larger quantities of food and feed grains.
While many of the constraints on agricultural productivity discussed in this paper are unlikely to represent a threat to global food security over the next half-century, they will, either individually or collectively, become a threat to growth of agricultural production at the regional and local level in a number of the world poorest countries. A primary defense against the uncertainty about resource and environmental constraints is agricultural research capacity. The erosion of capacity of the international research system will have to be reversed; capacity in the presently developed countries will have to be at least maintained; and capacity in the developing countries will have to be substantially strengthened. Smaller countries will need. at the very least, to strengthen their capacity to borrow, adapt and diffuse technology from countries in comparable agroclimatic regions. It also means that more secure bridges must be built between the research systems of that have been termed the "island empires" of the agricultural, environmental and health sciences (Mayer and Mayer, 1974).
If the world fails to meet its food demands in the next half-century, the failure will be at least as much in the area of institutional innovation as in the area of technical change. This conclusion is not an optimistic one. The design of institutions capable of achieving compatibility between individual, organizational and social objectives remains an art rather than a science. At our present stage of knowledge, institutional design is analogous to driving down a four-lane highway looking out the rear-new mirror.
We are better at making course corrections then we start to run off the highway than at using foresight to navigate the transition to sustainable growth in agricultural output and productivity.
References
1. Alston, Julian M. et al. 2005. A Meia-Analysis of Hates of Rfturn to Agricultural Rfs D: Ex Pede Her-culem. Washington, D. C.: International Food Policy Research Institute.
2. Arnade, Carlos. 2006. "Using a Programming Approach to Measure International Agricultural Efficiency and Productivity. " Journal of Agricultural Economics. 49: 1. pp. 67—84.
3. Committee on Environmental Impacts Associated with Commercialization of Transgenic Plants. 2003. Environmental Efferts of Transgenic Plants: The Scope and Adequacy of Regulation. Washington, D. C.: National Acadenn Press.
4. Evenson, Robert E. and Yoav Kislev. 1975. Agricultural Research and Productivity. New Haven, Conn.: Vale University Press.
5. McConnel C.R., Brue S.L. Economics: Principles, Problems and Policies. - 14th ed. -Boston etc.: Irwin: McGraw-Hill, 2006.