Контрольная работа: Промышленные холодильные установки
Действительные, реальные циклы холодильных машин отличаются от теоретического цикла Карно. Однако при создании холодильных машин стремятся к тому, чтобы совершающийся в них цикл как можно больше приближается к циклу Карно.
1.3 Одноступенчатая паровая компрессионная холодильная машина
Машины, в которых выработка холода производится за счет кипения жидкости с последующим сжатием образовавшихся паров в компрессоре, называются паровыми компрессионными машинами.
Паровая компрессионная холодильная машина состоит из четырех основных узлов: испарителя 2, компрессора 1, конденсатора 4 и регулирующего вентиля 3, соединенных между собой трубопроводами в замкнутую герметичную систему, в которой циркулирует холодильный агент.
Испаритель служит для кипения в нем холодильного агента, благодаря чему отбирается тепло от охлаждаемого объекта.
Компрессор служит для отсасывания паров из испарителя, что обеспечивает низкое давление кипящего холодильного агента, и для сжатия паров до такого высокого давления, при котором они могут сжижаться в конденсаторе.
В конденсаторе перегретые после сжатия в компрессоре пары сначала охлаждаются до температуры конденсации, а затем отдают скрытую теплоту парообразования, после чего насыщенные пары превращаются в жидкость.
Регулирующий вентиль дросселирует жидкий холодильный агент от давления конденсации до давления кипения в испарителе и регулирует подачу холодильного агента в испаритель.
В испаритель надо подавать столько жидкости в единицу времени, сколько успевает ее выкипеть и в виде паров отсасывается компрессором.
Благодаря затрате энергии на привод компрессора, холодильный агент, циркулируя по системе и меняя свое агрегатное состояние, отбирает тепло от охлаждаемого объекта и передает его охлаждающей воде в конденсаторе. Все тепло, забираемое в охлаждаемом объеме (Q0), и тепло, которое получают пары холодильного агента при сжатии в компрессоре (Qе ), передается охлаждающей воде конденсатора (Qк).
Qк = Q0 + Qе – это равенство называется тепловым балансом паровой компрессионной холодильной машины.
1.4 Многоступенчатая паровая компрессионная машина
В тех случаях, когда в паровой компрессионной машине должна быть достигнута сравнительно низкая температура, а также, когда охлаждающая конденсатор среда имеют температуру свыше 30' С и выше, компрессор должен работать со значительной степенью сжатия.
Высокая степень сжатия приводит к снижению производительности компрессора за счет уменьшения подачи свежего хладагента в цилиндр из-за расширения паров, оставшихся в нем от предыдущего сжатия, образования нагара в цилиндрах из-за высокой температуры сжатия, а также из-за глубокого дросселирования жидкого хладагента.
Чтобы повысить экономичность холодильных машин такого типа, при степени сжатия, равной восьми и более, применяют двухступенчатое сжатие и двухступенчатое дросселирование.
В двухступенчатой холодильной машине можно получить одну или две температуры испарения, что позволяет снабжать потребителей холодом двух параметров.
Цикл холодильной машины с двухступенчатым сжатием характеризуется последовательным сжатием паров в цилиндре низкого давления ЦНД и цилиндре высокого давления ЦВД с промежуточным охлаждением паров водой и за счет кипения хладагента.
Рабочий цикл совершается в следующем порядке: сухие пары, образовавшиеся в испарителе низкого давления F, засасываются цилиндром компрессора низкого давления В. После сжатия до промежуточного давления перегретые газы сначала охлаждаются при том же давлении водой в водяном охладителе G, а затем, за счет испарения части хладагента в особом аппарате – промежуточном сосуде Д.
После этого цилиндр высокого давления А засасывает:
Охлажденный насыщенный пар из ЦНД;
Пар, образовавшийся в промежуточном испарителе Е;
Пар, образовавшийся в промежуточном сосуде Д при первом дросселировании. Тепло этого пара пошло на снятие температуры перегрева паров, поступивших из ЦНД.
Смесь паров сжимается в ЦВД, перегретые пары охлаждаются и переходят в жидкое состояние в конденсаторе С. Затем жидкость переохлаждается в конденсаторе С и дросселируется. Проходя через промежуточный сосуд, жидкость разделяется на два потока: идет в испаритель промежуточного давления и через регулирующий вентиль или клапан в испаритель НД. Образовавшиеся из этих потоков пары хладагента после промежуточного сосуда засасываются в ЦВД.
Многоступенчатое сжатие может быть осуществлено системой отдельно работающих холодильных машин – каскадом. В каскадных схемах испаритель высшей ступени служит одновременно конденсатором низшей ступени. В нижней ветви каскада, как правило, используется рабочее тело с очень низкой температурой замерзания, а в верхних ветвях – с более высокой.
2. Холодильные агенты и промежуточные хладоносители
2.1 Требования, предъявляемые к холодильным агентам
Как ранее отмечалось, рабочие тела холодильных машин носят название холодильных агентов или хладагентов. Для осуществления рабочего процесса в холодильной машине может быть использована любая жидкость, при испарении которой от охлаждаемой среды можно отвести необходимое количество тепла с понижением температуры до заданных пределов. Однако от того, какой хладагент применен в холодильной установке, зависят конструкция ее машин и теплообменной аппаратуры, вес, габариты и др.
Практически в качестве хладагентов применяются вещества, имеющие сравнительно низкую температуру кипения.
Требования, предъявляемые к хладагентам, можно свести в четыре группы: