Контрольная работа: Радиоактивность и момент силы. Понятие ноосферы

Современное понятие видимой звёздной величины сделано таким, чтобы оно соответствовало величинам, приписанным звёздам древнегреческим астрономом Гиппархом во II веке до н. э. Гиппарх разделил все звёзды на шесть величин. Самые яркие он назвал звёздами первой величины, самые тусклые — звёздами шестой величины. Промежуточные величины он распределил равномерно между оставшимися звёздами.

В 1856 году Н. Погсон предложил формализацию шкалы звёздных величин. Видимая звёздная величина определяется по формуле:

где I — световой поток от объекта, C — постоянная.

Поскольку данная шкала относительная, то её нуль-пункт (0m ) определяют как яркость такой звезды, у которой световой поток равен 10³ квантов /(см²·с·Å) в зелёном свете (шкала UBV) или 106 квантов /(см²·с·Å) во всём видимом диапазоне света. Звезда 0m за пределами земной атмосферы создаёт освещённость в 2,54·10−6 люкс.

Шкала звёздных величин является логарифмической, поскольку изменение яркости в одинаковое число раз воспринимается как одинаковое (закон Вебера — Фехнера). Кроме того, поскольку Гиппарх решил, что величина тем меньше, чем звезда ярче, то в формуле присутствует знак минус.

Следующие два свойства помогают пользоваться видимыми звёздными величинами на практике:

1. Увеличению светового потока в 100 раз соответствует уменьшение видимой звёздной величины ровно на 5 единиц.

2. Уменьшение звёздной величины на одну единицу означает увеличение светового потока в 101/2,5 =2,512 раза.

В наши дни видимая звёдная величина используется не только для звёзд, но и для других объектов, например, для Луны и Солнца и планет. Поскольку они могут быть ярче самой яркой звезды, то у них может быть отрицательная видимая звёздная величина.

Астрономические наблюдения Вселенной позволили с относительной точностью установить «возраст» Вселенной, который по последним данным составляет 13,73 ± 0,12 миллиардов лет. Однако, среди некоторых учёных существует точка зрения, что Вселенная никогда не возникала, а существовала вечно и будет существовать вечно, изменяясь лишь в своих формах и проявлениях. Представления о форме и размерах Вселенной в современной науке также являются остродискуссионными, предположительно протяжённость Вселенной составляет не менее 93 миллиардов световых лет, при наблюдаемой части всего в 13,3 млрд. св.л.

Галактики содержат от 10 миллионов (107 ) до нескольких триллионов (1012 ) звёзд, вращающихся вокруг общего центра тяжести. Кроме отдельных звёзд и разрежённой межзвёздной среды, большая часть галактик содержит множество кратных звёздных систем, звёздных скоплений и различных туманностей. Как правило, диаметр галактик составляет от нескольких тысяч до нескольких сотен тысяч световых лет, а расстояния между ними исчисляются миллионами световых лет.

Хотя около 90 % массы галактик приходится на долю тёмной материи, природа этого невидимого компонента пока не изучена. Существуют свидетельства того, что в центре многих (если не всех) галактик находятся сверхмассивные чёрные дыры.

Межгалактическое пространство является практически чистым вакуумом со средней плотностью меньше одного атома вещества на кубический метр. Возможно, что в наблюдаемой части Вселенной находится около 1011 галактик.

5. Поясните принцип неопределенности, понятия детерминизма и индетерминизма. Как изменились представления о случайном и закономерном? Поясните роль измерения и прибора в квантовой механике

Принцип неопределённости Гейзенберга (или Гайзенберга) — в квантовой механике так называют принцип, дающий нижний (ненулевой) предел для произведения дисперсий величин, характеризующих состояние системы.

Обычно принцип неопределённости иллюстрируется следующим образом. Рассмотрим ансамбль невзаимодействующих эквивалентных частиц, приготовленных в определённом состоянии, с каждой из которых производятся два последовательных измерения. Первое определяет импульс частицы, а второе, сразу после этого, её координату. Измерение импульса даст некоторое распределение с характерной дисперсией. Второе же измерение даст распределение значений, дисперсия которого будет связана с дисперсией импульса так, что .

В общем смысле, соотношение неопределённости возникает между любыми переменными состояния, определяемыми некоммутирующими операторами. Это — один из краеугольных камней квантовой механики, который был открыт Вернером Гейзенбергом в 1927 г.

Детермини́зм (от лат. determine — определяю) — учение о первоначальной определяемости всех происходящих в мире процессов, включая все процессы человеческой жизни, со стороны Бога (теологический детерминизм, или учение о предопределении), или только явлений природы (космологический детерминизм), или специально человеческой воли (антропологическо-этический детерминизм), для свободы которой, как и для ответственности, не оставалось бы тогда места. Под определяемостью, здесь подразумевается философское утверждение, что каждое произошедшее событие, включая, и человеческие поступки и поведение однозначно определяется множеством причин, непосредственно предшествующих данному событию. В таком свете детерминизм может быть также определен как тезис, утверждающий, что имеется только одно, точно заданное, возможное будущее.

Индетерминизм (от лат. in — не и лат. determinare — определять) — учение о том, что имеются состояния и события, для которых причина не существует или не может быть указана. Противоположен детерминизму.

Вопрос о соотношении случайности и закономерности в эволюции рассматривался многими биологами и философами. Вопрос имеет множество аспектов, в том числе и самый общий – мировоззренческий.

Суть дилеммы, если говорить упрощенно, состоит в том, что эволюция в целом производит впечатление весьма закономерного процесса, однако, согласно господствующим представлениям ("синтетической теории эволюции") в основе его лежат случайные факторы (прежде всего - случайные мутации). Как же из набора случайностей рождается нечто закономерное? Это противоречие особенно подробно рассматривается в работах Л.С.Берга, А.А.Любищева и С.В.Мейена. Л.С.Берг противопоставлял "эволюции на основе случайностей" - тихогенезу - "эволюцию на основе закономерностей" - номогенез. С.В.Мейен мечтал о создании "номотетической" теории эволюции в противовес "синтетической". Эти идеи продолжают развиваться российскими палеонтологами.

Для системы из одних только квантовых объектов вообще нельзя было бы построить никакой логически замкнутой механики. Возможность количественного описания движения электрона требует наличия также и физических объектов, которые с достаточной точностью подчиняются классической механике. Если электрон приходит во взаимодействие с «классическим объектом», то состояние последнего, вообще говоря, меняется. Характер и величина этого изменения зависят от состояния электрона и поэтому могут служить его количественной характеристикой.

В этой связи «классический объект» обычно называют «прибором», а о его процессе взаимодействия с электроном говорят, как об «измерении». Необходимо, однако, подчеркнуть, что при этом отнюдь не имеется в виду процесс «измерения», в котором участвует физик-наблюдатель. Под измерением в квантовой механике подразумевается всякий процесс взаимодействия между классическим и квантовым объектами, происходящий помимо и независимо от какого-либо наблюдателя. Выяснение глубокой роли понятия измерения в квантовой механике принадлежит Бору.

Мы определили прибор как физический объект, с достаточной точностью подчиняющийся классической механике. Таковым является, например, тело достаточно большой массы. Однако не следует думать, что макроскопичность является обязательным свойством прибора. В известных условиях роль прибора может играть также и заведомо микроскопический объект, поскольку речь идет о величинах, характеризующих движение электрона, а не о величинах, характеризующих электрон как частицу (заряд, масса) и являющихся параметрами.

6. Что такое «начала термодинамики», идеальный и реальный цикл, коэффициент полезного действия тепловых машин? В чем состоит суть начал термодинамики и спора о «тепловой смерти Вселенной»?

Начала термодинамики — совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал.

К-во Просмотров: 301
Бесплатно скачать Контрольная работа: Радиоактивность и момент силы. Понятие ноосферы