Контрольная работа: Распределение "хи-квадрат" и его применение

χ2 = ∑(Э - Т)² / Т

Строим таблицу:

Эмпирич. (Э) Теоретич. (Т) (Э - Т)² / Т
Высокий 27 чел. 16,6 6,41
Средний 12 чел. 16,6 1,31
Низкий 11 чел. 16,6 1,93

Находим сумму последнего столбца:

χ2= 9,64

Теперь нужно найти критическое значение критерия по таблице критических значений (Таблица 1 в приложении). Для этого нам понадобится число степеней свободы (n).

n = (R - 1) * (C - 1)

где R – количество строк в таблице, C – количество столбцов.

В нашем случае только один столбец (имеются в виду исходные эмпирические частоты) и три строки (категории), поэтому формула изменяется – исключаем столбцы.

n = (R - 1) = 3-1 = 2

Для вероятности ошибки p≤0,05 и n = 2 критическое значение χ2 = 5,99.

Полученное эмпирическое значение больше критического – различия частот достоверны ( χ2= 9,64; p≤0,05).

Как видим, расчет критерия очень прост и не занимает много времени. Практическая ценность критерия хи-квадрат огромна. Этот метод оказывается наиболее ценным при анализе ответов на вопросы анкет.

Разберем более сложный пример.

К примеру, психолог хочет узнать, действительно ли то, что учителя более предвзято относятся к мальчикам, чем к девочкам. Т.е. более склонны хвалить девочек. Для этого психологом были проанализированы характеристики учеников, написанные учителями, на предмет частоты встречаемости трех слов: "активный", "старательный", "дисциплинированный", синонимы слов так же подсчитывались. Данные о частоте встречаемости слов были занесены в таблицу:

"Активный" "Старательный" "Дисциплинированный"
Мальчики 10 5 6
Девочки 6 12 9

Для обработки полученных данных используем критерий хи-квадрат.

Для этого построим таблицу распределения эмпирических частот, т.е. тех частот, которые мы наблюдаем:

"Активный" "Старательный" "Дисциплинированный" Итого:
Мальчики 10 5 6 21
Девочки 6 12 9 27
Итого: 16 17 15 s=48

Теоретически, мы ожидаем, что частоты распределятся равновероятно, т.е. частота распределится пропорционально между мальчиками и девочками. Построим таблицу теоретических частот. Для этого умножим сумму по строке на сумму по столбцу и разделим получившееся число на общую сумму (s).


"Активный" "Старательный" "Дисциплинированный" Итого:
Мальчики (21 * 16)/48 = 7 (21 * 17)/48 = 7.44 (21 * 15)/48 = 6.56 21
Девочки (27 * 16)/48 = 9 (27 * 17)/48 = 9.56 (27 * 15)/48 = 8.44 27
Итого: 16 17 15 s=48

Итоговая таблица для вычислений будет выглядеть так:

Категория 1 Категория 2 Эмпирич. (Э) Теоретич. (Т) (Э - Т)² / Т
Мальчики "Активный" 10 7 1,28
"Старательный" 5 7,74 0,8
"Дисциплинированный" 6 6,56 0,47
Девочки "Активный" 6 9 1
"Старательный" 12 9,56 0,62
"Дисциплинированный" 9 8,44 0,04
Сумма: 4,21

χ2 = ∑(Э - Т)² / Т

n = (R - 1), где R – количество строк в таблице.

В нашем случае хи-квадрат = 4,21; n = 2.

По таблице критических значений критерия находим: при n = 2 и уровне ошибки 0,05 критическое значение χ2 = 5,99.

Полученное значение меньше критического, а значит принимается нулевая гипотеза.

Вывод: учителя не придают значение полу ребенка при написании ему характеристики.


Приложение

Критические точки распределения χ2

Таблица 1


Заключение

Студенты почти всех специальностей изучают в конце курса высшей математики раздел "теория вероятностей и математическая статистика", реально они знакомятся лишь с некоторыми основными понятиями и результатами, которых явно не достаточно для практической работы. С некоторыми математическими методами исследования студенты встречаются в специальных курсах (например, таких, как "Прогнозирование и технико-экономическое планирование", "Технико-экономический анализ", "Контроль качества продукции", "Маркетинг", "Контроллинг", "Математические методы прогнозирования", "Статистика" и др. – в случае студентов экономических специальностей), однако изложение в большинстве случаев носит весьма сокращенный и рецептурный характер. В результате знаний у специалистов по прикладной статистике недостаточно.

Поэтому большое значение имеет курс "Прикладная статистика" в технических вузах, а в экономических вузах – курса "Эконометрика", поскольку эконометрика – это, как известно, статистический анализ конкретных экономических данных.

Теория вероятности и математическая статистика дают фундаментальные знания для прикладной статистики и эконометрики.

Они необходимы специалистам для практической работы.

Я рассмотрела непрерывную вероятностную модель и постаралась на примерах показать ее используемость.

И в конце своей работы я пришла к выводу, что грамотная реализация основных процедур математико-статического анализа данных, статическая проверка гипотез невозможна без знания модели "хи-квадрат", а также умения пользоваться ее таблицей.


Список используемой литературы

1. Орлов А.И. Прикладная статистика. М.: Издательство "Экзамен", 2004.

2. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1999. – 479с.

3. Айвозян С.А. Теория вероятностей и прикладная статистика, т.1. М.: Юнити, 2001. – 656с.

4. Хамитов Г.П., Ведерникова Т.И. Вероятности и статистика. Иркутск: БГУЭП, 2006 – 272с.

5. Ежова Л.Н. Эконометрика. Иркутск: БГУЭП, 2002. – 314с.

6. Мостеллер Ф. Пятьдесят занимательных вероятностных задач с решениями. М. : Наука, 1975. – 111с.

7. Мостеллер Ф. Вероятность. М. : Мир, 1969. – 428с.

8. Яглом А.М. Вероятность и информация. М. : Наука, 1973. – 511с.

9. Чистяков В.П. Курс теории вероятностей. М.: Наука, 1982. – 256с.

10. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: ЮНИТИ, 2000. – 543с.

11. Математическая энциклопедия, т.1. М.: Советская энциклопедия, 1976. – 655с.

12. http://psystat.at.ua/ - Статистика в психологии и педагогике. Статья Критерий Хи-квадрат. Автор: Попов О.А.

К-во Просмотров: 146
Бесплатно скачать Контрольная работа: Распределение "хи-квадрат" и его применение