Контрольная работа: Растекание тока в земле при замыкании

В сложившихся условиях эффективное решение задачи существенного повышения уровня надежности работы распределительных сетей может быть найдено только в комплексном подходе к решению этой проблемы.

С одной стороны, необходимо идти по пути постепенной замены электрооборудования с изношенной изоляцией на новое, для которого большинство внутренних перенапряжений не будут опасны в такой степени, а с другой – принять меры по предельному снижению всех электрических воздействий на ослабленную изоляцию, создав условия для продления срока эксплуатации состарившегося электрооборудования.

Повышение надежности работы распределительных сетей может быть достигнуто путем существенного ограничения внутренних перенапряжений за счет оптимизации режима заземления нейтрали. Режим нейтрали электрической сети высокого напряжения является важнейшим фактором, определяющим характер эксплуатации электрооборудования, влияющим на выбор изоляции и организацию релейной защиты. Этот режим определяет переходные электромагнитные процессы и связанные с ними перенапряжения, условия электробезопасности при замыканиях на землю и требования к заземляющим устройствам электроустановок.

Основным достоинством сетей с изолированной нейтралью является высокая степень надежности электроснабжения потребителей электрической энергии при относительно малых расходах на резервирование, поскольку при однофазных замыканиях на землю (наиболее частый вид повреждения) сеть может оставаться в работе длительное время (до четырех часов), достаточное для отыскания и устранения места повреждения. Однако при работе сети с изолированной нейтралью однофазные замыкания на землю неизбежно сопровождаются возникновением специфических для этого режима перенапряжений, к основным из которых относят дуговые перенапряжения. Такие перенапряжения существуют в виде переходных процессов при перемежающейся дуге и опасны для электрооборудования высокими кратностями и своей продолжительностью.

Возникновение перенапряжений при однофазных дуговых замыканиях на землю происходит за счет смещения нейтрали сети, что приводит к возрастанию напряжений на здоровых фазах до линейных. Наложенная на установившееся значение напряжения высокочастотная составляющая переходного процесса существенно повышает кратность дуговых перенапряжений. Это можно увидеть на рис. 1. При замыкании фазы С на землю появляется напряжение на нейтрали U0 , рост которого в процессе многократного зажигания и гашения дуги тока замыкания приводит к постепенному нарастанию (эскалации) перенапряжений в сети.

Рисунок 1 – Замыкание фазы С на землю и погасание дуги при первом переходе через «нуль» тока высокочастотных колебаний (C=3мкФ, IC=10A)

Поскольку в настоящее время отсутствуют надежные средства защиты электрооборудования сетей собственных нужд от последствий однофазных замыканий на землю, то одно из успешных решений данной проблемы может быть найдено путем оптимизации управления режимом нейтрали, обеспечивающим максимальное ограничение амплитуды и длительности всех возможных повышений напряжения и снижение до минимума тепловых потерь в месте пробоя изоляции.

Определение основных факторов, которые влияют на характер переходных процессов и величину перенапряжений при однофазных замыканиях на землю, производилось с использованием математической модели, разработанной на кафедре «Электрические станции» Донецкого национального технического университета. Она позволяет моделировать глухое замыкание фазы на землю и через перемежающуюся дугу, с погасанием ее при переходе через нуль высокочастотной составляющей (теория Петерсена) или составляющей тока промышленной частоты (теория Петерса и Слепяна), а также многократный пробой изоляции при различных значениях параметров кабельной сети, трансформаторов, двигательной нагрузки и режима работы нейтрали сети. Пользуясь методом контурных токов, для схемы замещения собственных нужд получена система дифференциальных уравнений 50-го порядка, которая численно интегрируется неявным методом Эйлера, обладающим повышенной численной устойчивостью, общее выражение которого на каждом i-ом шаге расчета h выглядит следующим образом:

где – вектор искомых переменных;

– вектор начальных приближений;

– текущее время расчета;

– количество решаемых уравнений.

Полученная система линейных алгебраических уравнений, записанная относительно вектора искомых переменных решается на каждом шаге методом Гаусса:

где A – матрица текущих коэффициентов размером ;

B – вектор-столбец начальных приближений и свободных членов системы уравнений.

Анализ полученных результатов позволяет сделать вывод о том, что наличие особенностей в характере переходных процессов в сети с резистивно заземленной нейтралью, где частотные параметры тока и напряжения могут меняться в широких пределах, может быть причиной того, что широко распространенные в настоящее время в сетях собственных нужд электростанций реле РТЗ-51 (РТЗ-50, РТ-40/0,2) в условиях часто повторяющихся пробоев, так называемых клевков, не успевают успешно сработать, и могут находиться в таком состоянии длительное время даже при больших токах замыкания на землю. Хотя и небольшие по величине, но длительно действующие в этом случае перенапряжения могут вызвать повреждение электрооборудования сети. Исходя из изложенного, можно заключить, что резистивное заземление нейтрали сети собственных нужд электростанций не исключает возможности повреждения электрооборудования в условиях неустойчивого горения дуги, что и подтверждается в эксплуатации.

К числу недостатков резисторного заземления нейтрали сети 6 кВ следует также отнести низкую термическую стойкость бэтелового резистора при его величине 100–400 Ом, так как допустимая длительность замыкания при этом не превышает 1,2 минуты. По истечении этого времени присоединительный трансформатор, в нейтраль которого включен резистор, должен быть отключен и сеть переводится в режим с изолированной нейтралью со всеми присущими ей недостатками.

Самым распространенным в настоящее время методом предотвращения аварийных последствий от однофазных замыканий в рассматриваемых сетях является заземление нейтрали сетей через настроенные индуктивности (ДГК), которые, сохраняя преимущества сетей с изолированной нейтралью, призваны улучшить условия работы электрооборудования при однофазных замыканиях на землю. Такое улучшение предполагается за счет существенного снижения скорости восстановления напряжения на поврежденной фазе после погасания дуги и уменьшения тока в месте замыкания на землю до уровня активной составляющей и высших гармоник. Вследствие этого, происходит самопроизвольное погасание дуги, а, следовательно, сокращение объемов разрушений, связанных с термическим действием заземляющей дуги, а также снижением кратности перенапряжений до безопасной величины, так как появляются пути для истекания на землю статических зарядов с емкости элементов сети здоровых фаз. Однако для достижения таких результатов степень расстройки катушки не должна превышать пределов .

При установке в сетях 6–35 кВ катушки снижается скорость восстановления напряжения на больной фазе после погасания дуги. При точной настройке катушки в резонанс время восстановления напряжения до номинального составляет несколько секунд. За это время прочность изоляции в месте повреждения успевает восстановиться. Но этот процесс имеет и отрицательные стороны, потому что все это время на здоровых фазах держится напряжение порядка (1,9–2,3) Uф. Относительная длительность существования таких перенапряжений может привести к пробою изоляции в этих фазах, особенно в старых сетях с плохой изоляцией.

В реальных сетях настроить катушку точно в резонанс невозможно, так как индуктивность катушки регулируется дискретно. Допускается расстройка катушки v<5%. При расстройке в 5% восстанавливающееся напряжение на поврежденной фазе имеет характер биений. Огибающая напряжения достигает максимума, составляющего 1,78Uф. В дальнейшем огибающая напряжения стремится к Uф. Прочность изоляции к моменту максимума биений может восстановиться, но напряжение 1,78Uф на больной фазе может вызвать повторный пробой изоляции с последующей кратностью перенапряжений 2,89Uф. При расстройке более 25% кратность перенапряжений такая же, как в сетях без установки дугогасящей катушки. При этом кратность перенапряжений при перекомпенсации немного меньше, чем при недокомпенсации.

При наличии несимметрии настройка установленной в сети ДГК в резонанс ведет к резкому увеличению напряжения смещения нейтрали в нормальном режиме работы сети. Причем несимметрия емкостей фаз относительно земли сильнее влияет на величину смещения нейтрали, чем несимметрия активных сопротивлений изоляции.

На основе проведенных исследований кафедрой «Электрические станции» Донецкого национального технического университета было предложено для устранения выявленных недостатков, вызванных смещением нейтрали сети и длительным существованием повышенных напряжений в режимах замыкания фазы на землю, параллельно ДГК подключить через контактор резистор. Сопротивление резистора выбирается таким, чтобы напряжение несимметрии не превышало допустимого, а величина и длительность перенапряжений были минимальными. Для того чтобы резистор не перегревался большими токами при устойчивом однофазном замыкании он отключается с помощью контактора с выдержкой времени 0,5 с при превышении напряжения нулевой последовательности 20% от номинального.

Из всего разнообразия направлений работы по совершенствованию системы компенсации емкостных токов на землю к практической реализации оказались приемлемыми и получили широкое распространение ДГК типа ЗРОМ со ступенчатым регулированием индуктивности катушки и плунжерные ДГК с плавным регулированием индуктивности. В первом случае регулирование осуществляется путем переключения ответвлений на рабочей обмотке ДГР. Шаг регулирования по току для таких аппаратов составляет не менее 10% от полного тока катушки. Переключение отпаек производится только вручную при полностью снятом напряжении. Следовательно, в современных условиях дефицита мощности и наличия графика аварийного отключения электроприемников при использовании таких ступенчато регулируемых дугогасящих аппаратов возникновение значительных расстроек компенсации является неизбежным.

Во втором случае регулирование ДГК осуществляется за счет плавного изменения величины воздушного зазора между подвижными частями магнитопровода (плунжерами). Такие катушки обладают линейной намагничивающей характеристикой во всех режимах работы сети. Эксплуатируются, как правило, в блоке с устройствами автоматической регулировки компенсации и обеспечивают скорость регулирования по току в пределах 0,25–2 А/с.

К-во Просмотров: 295
Бесплатно скачать Контрольная работа: Растекание тока в земле при замыкании