Контрольная работа: Решение задач симплекс методом

В последней таблице целевая строка имеет только положительные элемен­ты. Это значит, что составленный план оптимален и дальнейшее улучшение его невозможно.

Как видно из таблицы, оптимальный план предусматривает выпуск про­дукции П1 27 ед. (х1 = 27), П3 92 ед. (х3 = 92), дополнительного неизвестного П4 1 ед. (х4 = 1). П2 и дополнительные неизвестные в план не вошли, следовательно, х2 = 0, х5 = 0 х6 = 0. Подставив значения неизвестных в уравнения, получим:

2 * 92 + 4 * 0 + 3 * 27 + 1 = 266

1 * 92 + 3 * 0 + 4 * 27 + 0 = 200

3 * 92 + 2 * 0 + 1 * 27 + 0 = 303

F = 20 * 92 + 24 * 0 + 27 * 28 = 2596

Анализ оптимального плана.

а) Запасы сырья трех видов используются не полностью, так как х4 = 1, а х5 = х6 = 0.

б) Рассмотрим элементы матрицы.

От выпуска продукции II следует отказаться.

Элементы столбца х5 показывают, что увеличение запасов сахара на I ед. (х5 = 1) позволит увеличить выпуск продукции III вида на 0,3 ед. Сумма прибыли увеличится на 5,8 руб.

Элементы столбца х6 показывают, что увеличение запасов жира на I ед. (х6 = 1) позволит уменьшить выпуск только продукции III вида на 0,1 ед. (27 - 0.1) Сумма при­были увеличится на 4,7 руб.

Снижение запасов сырья приводит к изменениям выпуска продукции и суммы прибыли в обратном порядке.

Элементы целевой строки оптимального плана называются двойственными оценками, которые определяют величину изменения прибыли при изменении за­пасов сырья на I ед.

ЗАДАЧА 2

Требуется определить минимальную по стоимости смесь сырья для изго­товления пищевых концентратов, которые должны содержать питательные ве­щества (П). Эти вещества содержаться в сырье (М) в различных сочетаниях. Со­держание питательных веществ в сырье и готовом продукте, а также цена на ка­ждый вид сырья показаны в таблице.

Питательные вещества Виды сырья

Минимальное содержание

(единиц) питательных веществ

в готовом продукте

M1 М2 М3
П1 1 1 0 50
П2 4 1 3 140
П3 1 4 1 127
П4 0 3 2 80
Цена за единицу сырья, руб. 8 12 10

Виды используемого сырья условно обозначены через М1 , М2 , М3 ; содер­жание питательных веществ в сырье и готовом продукте обозначены П1 , П2 , П3 , П3 .

Исходные условия задачи выражаются неравенствами:

1 + 1х2 + 0х3 ≥ 50

1 + 1х2 + 3х3 ≥ 140

1 + 4х2 + 1х3 ≥ 127

1 + 3х2 + 2х3 ≥ 80

F = 1 + 12х2 + 10х3 = min

Умножив обе части неравенств на -1, получим систему с другим направле­нием знака неравенств:

-1х1 - 1х2 - 0х3 ≥ -50

-4х1 - 1х2 - 3х3 ≥ -140

-1х1 - 4х2 - 1х3 ≥ -127

1 - 3х2 - 2х3 ≥ -80

F = 1 + 12х2 + 10х3 = min

Преобразуем неравенства в эквивалентные равенства с помощью дополни­тельных неизвестных. Симплексные уравнения будут следующими:

-50 = -1х1 - 1х2 - 0х3 + 1х4 + 0х5 + 0х6 + 0х7

-140 = -4х1 - 1х2 - 3х3 + 0х4 + 1х5 + 0х6 + 0х7

-127 = -1х1 - 4х2 - 1х3 + 0х4 + 0х5 + 1х6 + 0х7

-80 = 0х1 - 3х2 - 2х3 + 0х4 + 0х5 + 0х6 + 1х7

F = 1 + 12х2 + 10х3 + 0х4 + 0х5 + 0х6 + 0х7 = min

Записанные уравнения отличаются от тех, которые нами рассматривались выше, тем, что коэффициенты при основных неизвестных и свободные члены имеют отрицательные знаки.

Решение таких задач производится двойственным симплексным методом. Система симплексных уравнений записывается в таблице.

cj p0 x0 8 12 10 0 0 0 0
x1 х2 х3 х4 х5 х6 х7
0 х4 -50 -1 -1 0 1 0 0 0
0 х5 -140 -4 -1 -3 0 1 0 0
0 х6 -127 -1 -4 -1 0 0 1 0
0 х7 -80 0 -3 -2 0 0 0 1
Zj - Cj 0 -8 -12 -10 0 0 0 0

Элементы целевой строки рассчитывают по обычным правилам и получа­ют отрицательные знаки.

В отличие от вычислительной процедуры основного симплексного метода решение задач двойственным методом выполняется в обратном порядке.

В итоговом столбце свободные числа имеют отрицательные знаки. Это яв­ляется свидетельством того, что данный план нельзя считать допустимым, так как он противоречит экономическому смыслу. План можно считать допустимым только тогда, когда в итоговом столбце не будет отрицательных чисел.

Ликвидация отрицательных чисел в итоговом столбце начинается с наи­большего по абсолютной величине. В нашем примере таким числом является (-140). Строка х5 , в которой находится это число, принимается за ключевую и со­ответственно выделяется.

Определив ключевую строку, находим ключевой столбец. Для этого нужно элементы целевой строки разделить на элементы ключевой строки и из получен­ных отношений выбрать наименьшее. Столбец, имеющий наименьшее отноше­ние, принимается за ключевой и так же как ключевая строка, выделяется.

Столбцы х1 , х2 , х3 будут иметь следующие отно­шения:

Наименьшее отношение имеет столбец х1 ,он и будет являться ключевым.

Определив ключевую строку, ключевой столбец и ключевое число, по обычным правилам преобразуются все элементы матрицы и записываются в но­вой таблице.

1-я итерация

cj p0 x0 18 15 24 0 0 0 0
x1 х2 х3 х4 х5 х6 х7
0 х4 -15 0 -0.75 0.75 1 -0.25 0 0
8 х1 35 1 0.25 0.75 0 -0.25 0 0
0 х6 -92 0 -3.75 -0.25 0 -0.25 1 0
0 х7 -80 0 -3 -2 0 0 0 1
Zj - Cj 280 0 -10 -4 0 -2 0 0

После преобразования элементов в итоговом столбце осталось еще три от­рицательных числа в строке х4 , х6 и х7 . Наибольшим по абсолютной величине яв­ляется число в строке х6 . Эта строка будет принята за ключевую для последую­щего расчета. Ключевой столбец определяется по наименьшему отношению эле­ментов целевой строки к элементам ключевой строки. Им будет столбец х2 . Вво­дим этот вид сырья в программу вместо неизвестного х6 . По общим правилам преобразуем элементы матрицы.

2-я итерация

cj p0 x0 x1 х2 х3 х4 х5 х6 х7
0 х4 3.4 0 0 0.8 1 -0.2 -0.2 0
8 х1 28.9 1.0 0.0 0.7 0.0 -0.3 0.1 0.0
15 х2 24.5 0.0 1.0 0.1 0.0 0.1 -0.3 0.0
0 х7 -6.4 0.0 0.0 -1.8 0.0 0.2 -0.8 1.0
Zj - Cj 525.3 0.0 0.0 -3.3 0.0 -1.3 -2.7 0.0

После преобразования элементов в итоговом столбце осталось еще одно отрицательное число в строке х7 . Эта строка будет принята за ключевую для по­следующего расчета. Ключевой столбец определяется по наименьшему отноше­нию элементов целевой строки к элементам ключевой строки. Им будет столбец х3 . Вводим этот вид сырья в программу вместо неизвестного х7 . По общим пра­вилам преобразуем элементы матрицы.

В таблице записаны преобразованные числа, полученные на 3-й итерации. В итоговом столбце все отрицательные числа исчезли, значит полученный план является допустимым и одновременно оптимальным. Вывод о том, что план по­лучен оптимальный, позволяют сделать элементы целевой строки. Все они отри­цательны или равны нулю, что свидетельствует об оптимальности результата при решении задач на минимум целевой функции.

3-я итерация

cj p0 x0 x1 х2 х3 х4 х5 х6 х7
0 х4 0.6 0.0 0.0 0.0 1.0 -0.1 -0.6 0.4
8 х1 26.3 1.0 0.0 0.0 0.0 -0.2 -0.3 0.4
15 х2 24.3 0.0 1.0 0.0 0.0 0.1 -0.3 0.0
10 х3 3.6 0.0 0.0 1.0 0.0 -0.1 0.4 -0.6
Zj - Cj 537.2 0.0 0.0 0.0 0.0 -1.7 -1.2 -1.9

Подставив значения неизвестных в исходные неравенства, получаем:

1 * 26,3 + 1 * 24,3 + 0 * 3,6 ≥ 50

4 * 26,3 + 1 * 24,3 + 3 * 3,6 ≥ 140

1 * 26,3 + 4 * 24,3 + 1 * 3,6 ≥ 127

0 * 26,3 + 3 * 24,3 + 2 * 3,6 ≥ 80

К-во Просмотров: 232
Бесплатно скачать Контрольная работа: Решение задач симплекс методом