Контрольная работа: Роль та вміст води в організмі
Роль і вміст води в організмі
Вступ
Ще в 60-го роки Нобелівський лауреат, найбільший авторитет в області біоенергетики Альберт Сцент-Дьерді вигукнув: «Біологія забула роль води або взагалі не думала про неї». Основну субстанцію організму – воду прийнято розглядати як майже нейтральний розчинник, в якому протікають біохімічні реакції, як субстанцію, яка розносить по тілу різні речовини. Вважалося, що води в організмі більш, ніж достатньо, а та, що втрачається з потом, сечею і повітрям, що видихається, легко компенсується будь-якими напоями, що містять воду, так, що роль води просто недооцінювали. Тільки в самі останні роки стало приходити розуміння ролі води для людини, того, що не існує води, як такої, що вона представлена безліччю різних форм і ця її різноманітність дозволяє їй не тільки підтримувати життя, але, по суті, бути джерелом життя.
Останніми роками почалися дослідження ролі води і її структурних особливостей, що міститься як в живих клітинах, так і в позаклітинному середовищі. Виявилося, що вода в живому організмі високо організована, тобто значна частина води пов'язана з біологічними молекулами, утворюючи багатошарові структури.
Отже, вода грає не менше важливу роль в динамічній структурній організації живої речовини – кліток і оточуючих їх сполучнотканинних елементів, що і біологічні молекули, які в ній мешкають. Але вона ще і безпосередньо бере участь в обміні речовин, який, власне, і лежить в основі всіх процесів життєдіяльності. Обмін речовин – це безперервна заміна одних молекул на інші, тобто розпад одних і синтез тих же або інших молекул, потрібних організму в даний момент і в даному його місці. Здійснення обміну речовин вимагає безперервного притоку енергії, а в її продукції в організмі вода, як ми побачимо далі, також грає ключову роль.
1. Біологічне значення води
1.1 Будова води
Вода – унікальна речовина і всі її аномальні властивості: висока температура кипіння, значна розчинювальна і диссоциїруюча здатність, мала теплопровідність, висока теплота випаровування і інші обумовлені будовою її молекули і просторовою структурою.
У окремо взятої молекули води є якість, яка виявляється тільки у присутності інших молекул: здатність утворювати водневі містки між атомами кисню двох що виявилися поряд молекул, так, що атом водню розташовується на відрізку, що сполучає атоми кисню. Властивість утворювати такі містки обумовлена наявністю особливої міжмолекулярної взаємодії, в якій істотну роль грає атом водню. Ця взаємодія називається водневим зв'язком.
Водневий зв'язок визначає унікальні властивості води: у води дуже високі температури кипіння, плавлення і паротворення, оскільки потрібно затрачувати додаткову енергію на розрив водневих зв'язків. Тільки вода знаходиться у всіх трьох агрегатних станах. Інші речовини з схожою будовою і молекулярною масою, такі як H2 S, HCl, NH3 в земних умовах є газами.
Кожна з приєднаних до даної молекули води сама здібна до приєднання подальших молекул. Цей процес можна називати «полімеризацією». Якщо тільки один з двох можливих зв'язків бере участь в приєднанні наступної молекули, а інша залишається вакантною, то «полімеризація» приведе до утворення або зигзагоподібного ланцюга, або замкнутого кільця. Якнайменше кільце, мабуть, може складатися з чотирьох молекул, але величина кута 90° робить водневі зв'язки украй напруженими. Практично ненапруженим повинні бути пятизвенные кільця (кут 108°), а шестизвенные (кут 120°), також як і семизвенные – напружені.
Розгляд реальних структур гідратів показує, що, дійсно, найбільш стійко шестизвінне кільце, що знаходиться в структурах льодів. Плоскі кільця є привілеєм клатратних гідратів, причому у всіх відомих структурах частіше за все зустрічаються плоскі пятизвінні кільця з молекул води. Вони, як правило, чергують у всіх структурах клатратных гідратів з шестизвінними кільцями, дуже рідко з чотирезвінні, а в одному випадку – з плоским семизвінним.
В цілому структура води представляється як суміш всіляких гідратних структур, які можуть в ній утворитися.
В прикладному аспекті це, наприклад, має важливе значення для розуміння дії лікарських речовин. Як було показане Л. Полингом структурована клатратна форма води в міжсинаптичних утвореннях мозку забезпечує, з одного боку, передачу імпульсів з нейрона на нейрон, а, з другого боку при попаданні в ці ділянки наркозної речовини така передача порушується, тобто спостерігається явище наркозу. Гідратація деяких структур мозку є однією з основ реалізації дії наркотичних анальгетиків (морфіну).
1.2 Біологічне значення води
Вода як розчинник. Вода – чудовий розчинник для полярних речовин. До них відносяться іонні з'єднання, такі як солі, у яких заряджені частинки (іони) дисоціюють у воді, коли речовина розчиняється, а також деякі неіонні з'єднання, наприклад цукру і прості спирти, в молекулі яких присутні заряджені (полярні) групи (-OH).
Результати численних досліджень будови розчинів електролітів свідчать, що при гідратації іонів у водних розчинах основну роль грає ближня гідратація – взаємодія іонів з найближчими до них молекулами води. Великий інтерес представляє з'ясування індивідуальних характеристик ближньої гідратації різних іонів, як ступеня скріплення молекул води в гідратних оболонках, так і ступеня спотворення в цих оболонках тетраедричної льодоподібної структури чистої води – зв'язки в молекулі змінюються на неповний кут. Величина кута залежить від іона.
Коли речовина розчиняється, його молекули або іони дістають можливість рухатися вільніше і, відповідно, його реакційна здатність зростає. З цієї причини в клітці велика частина хімічних реакцій протікає у водних розчинах. Неполярні речовини, наприклад ліпіди, не змішуються з водою і тому можуть розділяти водні розчини на окремі компартаменти, подібно тому, як їх розділяють мембрани. Неполярні частини молекул відштовхуються водою і в її присутності притягуються один до одного, як це буває, наприклад, коли крапельки масла зливаються в більш крупні краплі; інакше кажучи, неполярні молекули гідрофобні. Подібні гідрофобні взаємодії грають важливу роль в забезпеченні стабільності мембран, а також багатьох білкових молекул, нуклеїнових кислот і інших субклітинних структур.
Властиві воді властивості розчинника означають також, що вода служить середовищем для транспорту різних речовин. Цю роль вона виконує в крові, в лімфатичній і екскреторних системах, в травному тракті і у флоемі і ксилемі рослин.
Велика теплоємність . Питомою теплоємністю води називають кількість теплоти в джоулях, яке необхідне, щоб підняти температуру 1 кг води на 1° З. Вода володіє великою теплоємністю (4,184 Дж/г). Це значить, що істотне збільшення теплової енергії викликає лише порівняно невелике підвищення її температури. Пояснюється таке явище тим, що значна частина цієї енергії витрачається на розрив водневих зв'язків, що обмежують рухливість молекул води.
Велика теплоємність води зводить до мінімуму що відбуваються в ній температурні зміни. Завдяки цьому біохімічні процеси протікають в меншому інтервалі температур, з більш постійною швидкістю і небезпека порушення цих процесів від різких відхилень температури загрожує їм не так сильно. Вода служить для багатьох кліток і організмів середовищем незаселеного, для якого характерний досить значна постійність умов.
Велика теплота випаровування . Прихована теплота випаровування є міра кількості теплової енергії, яку необхідно повідомити рідини для її переходу в пару, тобто для подолання сил молекулярного зчеплення в рідині. Випаровування води вимагає досить значних кількостей енергії (2494 Дж/г). Це пояснюється існуванням водневих зв'язків між молекулами води. Саме через це температура кипіння води – речовини з такими малими молекулами – незвичайно висока.
Енергія, необхідна молекулам води для випаровування, черпається з їх оточення. Таким чином, випаровування супроводжується охолоджуванням. Це явище використовується у тварин при випоті, при тепловій задишці у ссавців або у деяких рептилій (наприклад, у крокодилів), які на пригріві сидять з відкритим ротом; можливо, воно грає помітну роль і в охолоджуванні листя, що транспірує.
Велика теплота плавлення . Прихована теплота плавлення є міра теплової енергії, необхідної для розплавлення твердої речовини (льоду). Воді для плавлення (танення) необхідна порівняно велика кількість енергії. Справедливо і зворотне: при замерзанні вода повинна віддати велику кількість тепловій енергії. Це зменшує вірогідність замерзання вмісту кліток і оточуючої їх рідини. Кристали льоду особливо згубні для живого, коли вони утворюються усередині кліток.
Густина і поведінка води поблизу точки замерзання . Густина води (максимальна при +4° З) від +4 до 0° Із знижується, тому лід легше за воду і у воді не тоне. Вода – єдина речовина, що володіє в рідкому стані більшою густиною, ніж в твердому, оскільки структура льоду більш рихла, ніж структура рідкої води.
Оскільки лід плаває у воді, він утворюється при замерзанні спочатку на її поверхні і лише під кінець в придонних шарах. Якби замерзання ставків йшло в зворотному порядку, від низу до верху, то в областях з помірним або холодним кліматом життя в прісноводих водоймищах взагалі не могло б існувати. Та обставина, що шари води, температура яких впала нижче 4 °С, підіймаються вгору, обумовлює перемішування води у великих водоймищах. Разом з водою циркулюють і що знаходяться в ній живильні речовини, завдяки чому водоймища заселяються живими організмами на велику глибину.
Після проведення ряду експериментів було встановлено, що зв'язана вода при температурі нижче за точку замерзання не переходить в кристалічні грати льоду. Це енергетично невигідно, оскільки вода достатньо міцно пов'язана з гідрофільними ділянками розчинених молекул. Це знаходить застосування в кріомедицині.
Велике поверхневе натягнення і когезія . Когезія – це зчеплення молекул фізичного тіла один з одним під дією сил тяжіння. На поверхні рідини існує поверхневе натягнення – результат діючих між молекулами сил когезії, направлених всередину. Завдяки поверхневому натягненню рідина прагне прийняти таку форму, щоб площа її поверхні була мінімальною (в ідеалі – форму кулі). Зі всіх рідин найбільше поверхневе натягнення у води (7,6 – 10,4 Н/м). Значна когезія, характерна для молекул води, грає важливу роль в живих клітках, а також при русі води по судинах ксилеми в рослинах. Багато дрібних організмів отримують для себе користь з поверхневого натягнення: воно дозволяє їм утримуватися на воді або ковзати по її поверхні.
Вода як реагент . Біологічне значення води визначається і тим, що вона є одним з необхідних метаболітів, тобто бере участь в метаболічних реакціях. Вода використовується, наприклад, як джерело водню в процесі фотосинтезу, а також бере участь в реакціях гідролізу.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--