Контрольная работа: Силовые преобразовательные устройства
Uпрям.макс. = Ö6*U2ф * sina = Ö6*220*1 = 538,9В
Выбираю вентиль: ТЛ-200; Iпр = 250А; Uп = 400-1000В; DUпр = 0,85;
Rt = 0,180С/Вт.
Выбранный вентиль проверяем:
Iв = 0,577*Id = 0,577*250 = 144,3А
Потери мощности в тиристоре:
DРв = Iв*DUпр = 144,3*0,85=122,6Вт
Температура структуры вентиля:
qв = DРв* Rt +qокр = 122,6*0,18+25 = 470С<1250С,
Выбранный вентиль проходит по условиям проверки
Трансформатор выбираем по типовой мощности и вторичному напряжению.
Sт = 1,05*Рd = 1,05*253*216 = 57,38кВА
U2ф= 0,427*Udo = 0,427*253 = 108В
I2ф = 0,817*Id = 0,817*216 = 176,5А
Кт = U1ф/U2ф = 253/108,03 = 2,3
Ток первичной обмотки трансформатора:
I1 = 0,817*(Id/Кт) = 0,817*(216/2,3) = 75,4А
Выбираю трансформатор: ТСЗР-63/0,5-68
ЗАДАНИЕ 6
Инверторный режим нереверсивного преобразователя, статические характеристики, диаграммы.
Инвертирование – это процесс преобразования постоянного тока в переменный. В преобразовательных установках инверторный режим очень часто чередуется с выпрямительным, например, в электроприводах постоянного тока. В двигательном режиме преобразовательная установка выполняет функции выпрямителя, передавая мощность двигателю постоянного тока. При переходе электродвигателя в генераторный режим (движение под уклон, спуск груза, торможение и т.д.) преобразователь работает в инверторном режиме, отдавая энергию генерируемую машиной постоянного тока, в сеть переменного тока. Таким образом, при инвертировании источник постоянного напряжения работает как генератор электрической энергии, характеризующийся тем, что направление его ЭДС и тока совпадают, а нагрузка переменного тока – как потребитель, у которого направления ЭДС и тока встречные.
Преобразователи частоты – это устройства, преобразующие переменный ток одной частоты в переменный ток другой частоты.
В промышленных электроприводах постоянного тока эффективное и вместе с тем наиболее экономичное торможение двигателя может быть достигнуто переводом двигателя в генераторный режим, при этом преобразователь выполняет функцию инвертора и поток мощности, изменив направление, проходит от машины постоянного тока в сеть переменного напряжения.
Принципиальная схема преобразователя, допускающего двухстороннее обращение потока мощности в вентильном электроприводе постоянного тока, приведена на рисунке. Питание вентиля осуществляется через две трехфазные группы обмоток, соединенных в зигзаг. Выходы от преобразователей присоединены к внешним зажимам машины противоположными полюсами. При такой перекрестной схеме система сеточного управления одного из преобразователей настраивается на работу его в качестве выпрямителя, питающего двигатель, а у другого – на работу его в качестве инвертора, ведомого сетью. Последний обеспечивает режим генераторного торможения.
Сопряжение углов a и b определяющих положение внешних характеристик, производится, исходя из равенства средних значений напряжения на выпрямителе и инверторе при таком минимальном значении постоянного тока, ниже которого кривая выпрямленного тока становится прерывистой. При таком сопряжении углов a и b не только обеспечивается плавный переход от выпрямительного режима к инверторному, но и приемлемая величина циркуляционного тока, протекающего по замкнутым контурам анодных ветвей выпрямителя и инвертора.
При уменьшении тока двигателя, при снятии нагрузки скорость вращения двигателя возрастет, при минимуме тока преобразователь переходит в инверторный режим. В приводе появляется при этом тормозной момент. Для получения минимального времени торможения угол опережения b инвертора постепенно увеличивается по мере снижения скорости генератора.
Движение рабочей точки в режиме форсированного торможения проходит по зигзагообразной кривой (левая часть рисунка), включающей пунктирные и промежуточные участки и участки инверторных характеристик.
При выполнении преобразователя по перекрестной схеме возможно изменение направления вращения (реверс). При этом изменяется настройка углов управления: в инверторе от углов b совершается переход на углы a. А в выпрямителе углы a заменяются углами b.
ЛИТЕРАТУРА
1. Преображенский В.И., Полупроводниковые выпрямители. М.: Энергоатомиздат. 1986