Контрольная работа: Синтез метанола

, где ΔН3 =252 кДж (в)

, где ΔН4 =8,4 кДж (г)

а также продукционная реакция образования метанола из содержащегося в синтез-газе диоксида углерода:

, где ΔН5 =49,5 кДж (д)

Кроме этого, образовавшийся метанол может подвергаться вторичным превращениям по реакциям:

Реакции (а—д) протекают с выделением тепла и уменьшением объема, но различаются величиной теплового эффекта и степенью контракции. Поэтому, хотя для всех этих реакций степень превращения возрастает с увеличением давления и понижением температуры, в наибольшей степени повышение давления влияет на равновесие основной реакции синтеза (а), для которой степень контракции максимальна и составляет 3:1. В то же время, понижение температуры ниже некоторого предела нецелесообразно, так как при низких температурах скорость процесса синтеза настолько мала, что не существует катализатора, которыйв этих условиях мог бы существенно ускорить достижение высокой степени превращения сырья.

Вследствие противоречивого влияния температуры на скорость процесса и равновесную степень превращения выход метанола за один проход реакционной смеси через реактор не превышает 20%, что делает необходимой организацию циркуляционной технологической схемы синтеза.

Температура процесса зависит главным образом от активности применяемого катализатора и варьируется в пределах от 250 до 420°С. В соответствии с температурным режимом работы катализаторы синтеза метанола подразделяются на высокотемпературные и низкотемпературные. Высокотемпературные катализаторы, получаемые методом соосаждения оксидов цинка и хрома, например, катализатор СМС-4 состава 2,5 ZnOZnCr2 O4 , термостойки, мало чувствительны к каталитическим ядам, причем отравляются обратимо, имеют высокую селективность, но активны только при высоких температурах (370—420°С) и давлениях (20—35 МПа). Низкотемпературные катализаторы, например, цинк-медь-алюминиевый состава ZnOCuOAl2 O3 или цинк-медь-хромовый состава ZnО-СиО- Сг2 О3 , менее термостойки, необратимо отравляются каталитическими ядами, но проявляют высокую активность при относительно низких температурах (250—300°С) и давлениях (5—10 МПа), что более экономично.

Оба типа катализаторов проявляют свою активность и селективность в узком интервале температур 20—30°С. Исходя из температурного режима работы катализаторов выбирается давление синтеза, которое тем больше, чем выше температура синтеза.

Состав исходной газовой смеси оказывает существенное влияние как на степень превращения оксидов углерода, так и на равновесную концентрацию метанола в продуктах синтеза. С увеличением объемного отношения Н2 :СО в синтез-газе степень превращения оксидов углерода возрастает, причем оксида углерода (IV) более интенсивно [рис. 12.2, 2]. Из рисунка также сле дует, что оптимальный состав газовой смеси отвечает отношению Н2 :СО=5:1. Равновесная концентрация метанола в продуктах реакции проходит через максимум, который отвечает стехиометрическому отношению Н2 :СО в исходной газовой смеси [рис. 12.3, 2].

Скорость образования метанола является функцией многих переменных:

где: к — константа скорости реакции синтеза метанола;

Ск — концентрация компонентов исходной газовой смеси,

τ — время контакта,

Т — температура,

Р — давление.

Образующиеся при синтезе побочные продукты оказывают существенное влияние на стадию хемосорбции и на кинетику образования метанола в целом. Поэтому, для реакции синтеза метанола предложено большое количестворазличных кинетических уравнений, выведенных на основе выдвинутых их авторами предположений о механизме реакции. Независимо от этого, время контактирования для реальных условий процесса синтеза может быть рассчитано по формуле [2]:

(1)

где: Р — давление, 1 МПа; Т — температура, К;

W — объемная скорость газа при нормальных условиях, с-1 .

Согласно [рис. 17.3., 1] оптимальными параметрами процесса являются объемная скорость газа – 40 000 ч-1 ; температура 370 – 380 о С при давлении 30 МПа. При этих значениях производительность катализатора составляет около 3,15 кг/(м3 ·ч). Концентрация метанола – 40 % (рис. 17.2 [1]). Степень превращения СО за один проход – 15%. Согласно [1] максимальная производительность наблюдается при молярном отношении Н2 :СО=4:1, на практике поддерживают отношение 2,15 – 2,25.

5. Технологический процесс получения метанола из оксида углерода и водорода включает ряд операций, обязательных для любой технологической схемы синтеза. Газ предварительно очищается от карбонила железа, сернистых соединений, подогревается до температуры начала реакции и поступает в реактор синтеза метанола. По выходе из зоны катализа из газов выделяется образовавшийся метанол, что достигается охлаждением смеси, которая затем сжимается до давления синтеза и возвращается в процесс.

Технологические схемы различаются аппаратурным оформлением главным образом стадии синтеза, включающей основной аппарат колонну синтеза и теплообменник. На рис. 1 представлена схема агрегата синтеза высокого давления с так называемой совмещенной насадкой колонны.

Сжатый до 32 МПа синтез-газ проходит очистку в масляном фильтре 1 и в угольном фильтре 2, после чего смешивается с циркуляционным газом. Смешанный газ, пройдя кольцевой зазор между катализаторной коробкой и корпусом колонны 3, поступает в межтрубное пространство теплообменника, расположенного в нижней части колонны (рис. 2). В теплообменнике газ нагревается до 330—340 °С и по центральной трубе, в которой размещен электроподогреватель, поступает в верхнюю часть колонны и проходит последовательно пять слоев катализатора. После каждого слоя катализатора, кроме последнего, в колонну вводят определенное количество холодного циркуляционного газа для поддержания необходимой температуры. После пятого слоя катализатора газ направляется в теплообменник, где охлаждается с 300—385 до 130 °С, а затем в холодильник-конденсатор типа «труба в трубе» 4 (рис. 1). Здесь газ охлаждается до 30— 35 °С и продукты синтеза конденсируются. Метанол-сырец отделяют в сепараторе 5 , направляют в сборник 7 и выводят на ректификацию. Газ проходит второй сепаратор 5 для выделения капель метанола, компримируется до давления синтеза турбоциркуляционным компрессором 6 и возвращается на синтез. Продувочные газы выводят перед компрессором и вместе с танковыми газами используют в качестве топлива.

Размещение теплообменника внутри корпуса колонны значительно снижает теплопотери в окружающую среду, что улучшает условия автотермичной работы агрегата, исключает наличие горячих трубопроводов, т.е. делает эксплуатацию более безопасной и снижает общие капиталовложения. Кроме того, за счет сокращения длины трубопроводов снижается сопротивление системы, что позволяет использовать турбоциркуляционные компрессоры вместо поршневых.


К-во Просмотров: 485
Бесплатно скачать Контрольная работа: Синтез метанола