Контрольная работа: Системы распознания текста и ввода данных

Разработчики учли даже возможность контекстных особенностей полей для ввода определенных данных. К примеру, в поле "Индекс", где содержатся только цифры, система распознавания никогда не перепутает цифру "2" с буквой "Z" или "5" с "S". Эта особенность также может быть использована в любых приложениях для Windows XP, что позволяет быстро и правильно вводить данные при помощи пера.

Стоит особенно отметить улучшенную интеграцию новой версии Windows XP TabletPC Edition с программами Microsoft Office в плане ввода и распознавания данных. Пользователю предлагается простой механизм ввода, а также возможность совмещать распознанный текст с графическими комментариями в программах семейства Microsoft Office 2003: Word 2003, Excel 2003 и, что особенно полезно, в PowerPoint 2003. Часто необходимо что-нибудь подчеркнуть в диаграмме, нарисовать тренд, подчеркнуть важную цифру. Все это теперь можно сделать в процессе создания, либо демонстрации презентации, и в дальнейшем, к примеру, отправить по электронной почте через Outlook 2003.

Однако в наибольшей степени новые возможности интеграции почувствуют на себе пользователи универсального менеджера заметок Microsoft Office OneNote 2003. Эта программа сочетает в себе возможности инструмента для хранения и редактирования текстовых и графических записей, мультимедийного контента, таблиц, и веб-контента. Все данные можно хранить в одном файле. К сожалению, Microsoft Office OneNote 2003 не входит и не будет включена в состав программ Microsoft Office, так что приобретать ее придется отдельно.

Вслед за выходом новой версии ОС разработчики получили новую платформу Windows XP Tablet PC Edition Software Development Kit 1.7, нацеленную на создание приложений с базовой поддержкой рукописного ввода и и контекстных свойств полей.

Приятным сюрпризом оказалась обновленная поддержка беспроводных устройств, в особенности, работающих через Bluetooth.

Помимо новых возможностей ввода информации, особое место в данной версии ОС занимает вопрос безопасности.

Нововведения заключаются в использовании усовершенствованной технологии безопасности - Advanced Security Technology, целью которой являются упреждающие и более консервативные меры защиты. Новшества, знакомые пользователям обычной Windows XP по второму сервис-паку, можно разделить на две главных части.

Новая версия ОС содержит ключевые обновления, закрывающие многочисленные бреши, и по умолчанию использует усиленные настройки безопасности, что позволяет более эффективно противостоять вирусным и хакерским атакам. Большую роль в этом играет встроенный брандмауэр Windows Firewall, известный в предыдущей версии как Internet Connection Firewall. Windows Firewall включен по умолчанию для всех без исключений программ и служб, что позволяет легко разобраться с межсетевой инфраструктурой и контролировать входящий и исходящий трафик. Важной особенностью Windows Firewall является то, что он обеспечивает защиту даже во время загрузки и завершения работы компьютера.

Улучшенная управляемость и контроль создает неоспоримые преимущества для простого конфигурирования и управления ресурсами безопасности. Появившийся в Панели управления новый комопнент Windows Security Center обеспечивает мониторинг работы Windows Firewall, службы автоматических обновлений, а также осуществляет контроль за антивирусным программным обеспечением. Это позволяет вовремя предоставить пользователю информацию о необходимых шагах для улучшения эффективности системы безопасности.

Новшества в системе автоматического обновления позволяют автоматически, в зависимости от скорости соединения с сайтом Windows Update, ранжировать и загружать критические обновления, ликвидирующие дыры, представляющие серьезную угрозу безопасности.

В заключении, хочется отметить более устойчивую работу компьютера, причем все программы сохранили свою функциональность (перечень протестированных программ можно уточнить у автора статьи).

2. Современные и перспективные носители энергии. Аккумуляторы

Сегодня в мире продолжают развиваться явления, нарушающие цивилизованное течение жизни: исчерпываются традиционные источники энергии, растет стоимость их добычи, интенсивно загрязняется окружающая среда, разрушается биосфера, образовывается чрезмерное количество органических отходов промышленного, сельскохозяйственного и бытового происхождения. Ликвидация всех этих проблем должна осуществляться ускоренными темпами, иначе человечество неминуемо ожидает судьба вымерших динозавров.

Биоэнергетика – это выбор, имеющий глобальную перспективу для дальнейшего успешного развития цивилизации. Преодоление современных и предотвращение вероятных экологических кризисов невозможно без применения новейших экобиотехнологий для очистки сточных вод, биосорбции тяжелых металлов из стоков, обезвреживания опасных газовых выбросов, обогащения воздуха кислородом, использование перспективных средств обезвреживания твердых и жидких промышленных отходов, биодеградации нефтяных загрязнений в почве и воде, биодеградации химических пестицидов и инсектицидов, повышения эффективности методов биологического восстановления загрязненных почв, замены ряда агрохимикатов на биотехнологические препараты и т.д. Важными направлениями также должны стать разработка экобиотехнологий, направленных на производство биогаза и водорода из органических отходов, микробиологическая деструкция ксенобиотиков, применение биоиндикации и биотестирования в системе экологического мониторинга.

Первая фундаментальная особенность биоэнергетики состоит в том, что все живые объекты являются термодинамически открытыми системами, которые успешно функционируют только при условии постоянного обмена веществом и энергией с окружающей средой. Термодинамика таких систем существенным образом отличается от классической. Они становятся принципиально способными к самоорганизации и самоусовершенствованию.

Вторая чрезвычайно важная особенность биоэнергетики связана с тем, что обменные процессы в клетках происходят при условии отсутствия значительных колебаний температуры, давления и объема. Природа, в отличие от техники, не могла себе позволить высокие температуры, давление и прочие условия, наличествующие в современных двигателях внутреннего сгорания и аналогичных тепловых машинах. Переход энергии химической связи в полезную биологическую работу в отдельной клетке или в организме вцелом происходит без преобразования химической энергии в тепловую.

И наконец, необходимо подчеркнуть, что в процессах преобразования энергии в живых объектах широко присутствуют электрохимические стадии. Совокупная мощность электрохимических процессов, происходящих в клетках всех живых организмов биосферы, на много порядков превышает мировые масштабы технического использования электрохимической энергии.

Одним из основных результатов развития биоэнергетики в последние десятилетия является установление сходства энергетических процессов во всем живом мире – от микроорганизмов до человека. Одинаковыми для растительного и животного мира оказались и вещества, в которых энергия аккумулируется, и процессы, с помощью которых подобное аккумулирование осуществляется. Такое же сходство обнаружено и в процессах использования аккумулированной в этих веществах энергии. Технические и биологические системы преобразования химической энергии в электрическую тоже принципиально сходны. Различия существуют только в деталях. При создании технических электрохимических систем обычно не возникает особых проблем с изоляцией, поскольку они окружены диэлектрической средой – воздухом. Кроме того, в технических устройствах в качестве электродов и проводников используются металлы с высокой электропроводностью. В отличие от этого, живая природа создала свои электрохимические устройства в недиэлектрической среде – растворе электролита. К тому же, в ее распоряжении не было металлических проводников. Поэтому «биологическая электрохимия» является как бы прямой противоположностью обычной для нас «технической электрохимии». В этом случае не электронный проводник, а электролитная фаза распределяется на два объема. Изолирующим слоем между ними служит тонкая пленка – клеточная мембрана. Разница потенциалов в такой системе генерируется между разделенными мембраной объемами электролита.

Подобное строение имеют митохондрии и хлоропласты. Именно эти субклеточные элементы и являются биологическими электрохимическими генераторами – «энергетическими станциями» клетки. В процессе исследований биоэлектрохимики установили, что в живую клетку как будто вмонтирован водородно-кислородный топливный элемент (ТЭ). Подобно тому, как в ТЭ химическая энергия топлива превращается в электрическую, живая природа химическую энергию сначала трансформирует в электрические формы, а потом, в процессе окислительного фосфорилирования, сразу же консервирует их в энергию химических связей. Практическое применение уже нашли ТЭ, где в качестве топлива используют водород, а окислителя – кислород, электролитом служат щелочь или ионообменный полимер. Такие ТЭ работают при невысоких температурах (до 370° К), что обеспечивает ресурс их работы до нескольких тысяч часов. Достигнутые на сегодняшний день в разработке ТЭ успехи связаны главным образом с химией (в частности электрохимией), тем не менее необходимо отметить, что существуют и другие, на наш взгляд, более перспективные пути решения этой проблемы.

Особое внимание стоит обратить на системы энергоустановок, способные с помощью микроорганизмов превращать непосредственно энергию химических связей органических молекул в электрическую. Эти процессы позволят миновать тепловую стадию, трансформировав свободную энергию сразу в электрическую. В результате энергия органических химических соединений будет использована наиболее эффективно, и при этом окружающая среда не будет загрязняться лишним теплом. Такие технологии теоретически позволяют значительно снизить уровень потребления органического топлива, не уменьшая при этом уровень энергопотребления. Некоторые современные экспериментальные разработки биотопливных элементов продемонстрировали довольно высокую частоту тока на электроде (до 50 м/см2) и мощность (более 1кВт), хотя они еще не доведены до того состояния, чтобы их можно было широко внедрять в производство. Для создания биоэнергетической установки надо решить ряд взаимосвязанных технологических задач.

Во-первых, необходимо разработать технологию получения стабилизированных мембран со значительными площадями и отработать условия формирования компактных объемных структур. Во-вторых, научиться включать в эти мембраны комплекс соответствующих биокатализаторов, чтобы обеспечить полное окисление органических веществ. Кроме того, разработать механизмы и устройства для регулирования интенсивности процесса окисления и обеспечения его цикличности с целью регулирования потока энергии от биоэнергетического источника в целом. По такому принципу на основе искусственных мембран можно построить и солнечные батареи. Если удастся включить в эти стабилизированные мембраны хлорофилл и ряд вспомогательных ферментов, тогда энергию возбуждения пигмента фотонами света можно будет непосредственно принимать на токопроводящую подкладку. Безусловно, современные преобразователи химической энергии в электрическую в виде топливных элементов или иных аналогичных устройств еще не в состоянии удовлетворить потребности ХХ? века, но можно отметить, что они позволяют нам приблизиться к решению энергетических проблем человечества, а следовательно, и его экологических проблем. Широкое применение биохимических и электрохимических принципов с использованием микроорганизмов в устройствах прямого преобразования различных видов энергии в электрическую, на наш взгляд, может быть рассмотрено как вариант экобиотехнологии. Особенностью таких систем будут высокий кпд и минимальное загрязнение окружающей среды.

Следующий аспект биоэнергетики неразрывно связан с использованием возобновляемых источников энергии (ВИЭ). Все живое население биосферы, кроме человека, на протяжении своего эволюционного развития приспособилось к существованию за счет возобновляемых энергетических ресурсов. Такая стратегия использования энергии в условиях Земли является единственно возможным направлением устойчивого развития и стабильного существования. Именно поэтому возможность широкого использования ВИЭ в народном хозяйстве в течение последних нескольких лет рассматривается очень внимательно. Такой подход имеет преимущества и в контексте охраны окружающей среды. Доля ВИЭ в топливно-энергетическом балансе отдельных стран до этого времени очень дифференцирована, и с целью ее увеличения в Европейском Союзе принята Белая книга «Энергия будущего в возобновляемых источниках энергии». На сегодняшний день это издание – основной документ, который определяет направления долгосрочной политики и ставит количественную цель – увеличение доли ВИЭ с 6 до 10% за период 2000–2020 годов. Возобновляемые источники энергии в будущем должны составлять значительную долю и в энергетическом балансе отдельных районов и областей Украины. Ежегодно у нас потребляется около 200 млн. тонн условного топлива, при этом добыча из природных источников составляет всего лишь 80 млн. т. Важным потенциальным ресурсом при таком балансе собственного и импортируемого энергетического сырья может стать биотопливо. Возможности производства и использования биомассы в Украине определяются, в первую очередь, растениеводством, основу которого составляет выращивание зерновых. Солома – неплохой источник биомассы. Если считать, что для энергетических потребностей можно использовать около 20% общего количества соломы, то на этой основе может быть замещена определенная часть общего потребления первичных энергоносителей в Украине.

Форма биомассы для использования ее в качестве биотоплива может быть довольно разнообразной. Биомассу в энергетических целях можно использовать в процессе непосредственного сжигания древесины, соломы, сапропеля (органических донных отложений), а также в переработанном виде как жидкие (эфиры рапсового масла, спирты) или газообразные (биогаз – газовая смесь, основным компонентом которой является метан) топлива. Конверсия биомассы в носителе энергии может происходить физическими, химическими и биологическими методами, последние являются наиболее перспективными.

Мировой опыт показывает, что жидкое биотопливо становится перспективной и популярной категорией энергетических ресурсов, которая по своему значению для мировой энергетики занимает следующую позицию после твердого топлива из биомассы. На сегодняшний день в странах ЕС доля жидкого биотоплива не превышает 0,5% общего использования моторных масел, минерального дизеля и бензина. Это объясняется прежде всего высокой стоимостью производства, что делает жидкое биотопливо неконкурентоспособным по сравнению с традиционным горючим, производящимся из нефти. Несмотря на высокую себестоимость, производство жидкого топлива из биомассы в странах ЕС динамично растет. Прежде всего это происходит благодаря экологически продуманной экономической политике на государственном уровне. Основные пути развития производства жидкого биотоплива, предназначенного для транспортных средств с дизельными двигателями и двигателями внутреннего сгорания, непосредственно связаны с выращиванием масличных культур и растений с большим содержанием крахмала. В зависимости от вида сырья и масштабов производства, затраты на изготовление этого вида биотоплив меняются в диапазоне от 0,4 долл. /дм3 для этанола из кукурузы в США до 0,6 долл. /дм3 для метиловых эфиров высших жирных кислот из растительных масел в Европе. По сравнению с ними, стоимость производства жидкого топлива из полезных ископаемых составляет около 0,2 долл. /дм3. Хотя сегодня производство такого биотоплива – процесс более дорогостоящий, эксперты утверждают, что различие в стоимости био- и минерального горючего начнет исчезать примерно в 2010 году. На основе проведенных в США исследований установлено: стоимость ликвидации негативных последствий, наблюдаемых в окружающей среде и вызванных производством и применением топлива из полезных ископаемых, колеблется в пределах от 0,1 до 0,4 долл. /дм3. Таким образом, суммарный баланс стоимости указывает на то, что горючее, полученное из возобновляемых биологических источников, может быть дешевле в валовом экономическом расчете.

Еще одним возможным путем дополнения и частичной замены традиционных видов топлива является получение и использование биогаза. Важный аргумент в пользу этого источника энергии – необходимость решения на современном уровне экологических проблем, связанных с утилизацией отходов. Одна из основных тенденций при экологически безопасной переработке органических отходов – развитие комплексных технологий утилизации биомассы за счет метанового сбраживания, в результате которого образовуется биогаз. Сырье для производства биогаза – это, прежде всего, разнообразные органические отходы агропромышленного комплекса, которые богаты целлюлозой и прочими полисахаридами. Преобразование органических отходов в биогаз происходит в результате целого комплекса сложных биохимических превращений. Этот процесс получил название ферментации биомассы. Он происходит только благодаря бактериям и осуществляется в специальных технологических установках – ферментаторах. Необходимость создания и поддерживания оптимальных условий для роста и существования культуры бактерий в ферментаторе определяет себестоимость получения биогаза. Существует ошибочное представление, будто главное назначение ферментационных установок – получения биогаза, служащего дополнительным источником местного энергоснабжения. Оценивая с этой точки зрения экономическую эффективность переработки биомассы, сторонники этого подхода не учитывают, что биогазовые установки являются также оборудованием для переработки навоза и прочих органических отходов. Поэтому экономические затраты на их создание и эксплуатацию нужно рассматривать комплексно. При подсчете себестоимости биогаза необходимо учитывать стоимость мероприятий по утилизации отходов и защиты окружающей среды. В таком случае построение и эксплуатация биогазовых установок всегда будет иметь положительный экономический эффект. Расчеты свидетельствуют: несмотря на значительные капитальные вложения, срок окупаемости промышленной биогазовой установки равняется приблизительно трем годам. Объемы современного производства биогаза из агропромышленного сырья в Украине специалисты Национального аграрного университета оценивают на уровне 1,6 млн. тонн условного топлива. Учитывая технологические возможности использования зеленой массы как исходного сырья для получения биогаза, потенциальные возможности синтеза биогаза и использование его как топлива можно считать достаточно большими.

Недавно появились сообщения о возможности переработки органических соединений растительного происхождения для получения водорода, что, с точки зрения экологии, является идеальным топливом, имеющим высокую теплообразовательную способность (12,8 кДж/м3) и сгорающим без образования каких-либо вредных примесей. Существуют фототрофные бактерии, способные выделять водород под действием света. Пока они работают достаточно медленно. Но в них заложены природой такие биохимические механизмы и содержатся такие ферменты, которые позволяют катализировать образование водорода из воды. Некоторые ферменты параллельно с водородом образовывают и кислород, то есть происходит фотолиз воды. Примером может служить система, включающая хлоропласты или хлорофилл и фермент гидрогенеза. Хотя это направление пока не дало практических результатов, оно довольно перспективно для дальнейшего развития биоэнергетики.

Несмотря на то, что новые электродные материалы обладают в несколько раз меньшей по сравнению с чистым литием удельной электрической энергией, аккумуляторы на их основе получаются достаточно безопасными для человека при условии соблюдения некоторых мер предосторожности в ходе заряда-разряда. А удельные зарядно-разрядные характеристики литий-ионных аккумуляторов на основе оксидов все-таки превышают аналогичные показатели NiCd- и NiMH-аккумуляторов по крайней мере вдвое, хорошо работают на больших токах (что необходимо, например, при использовании в сотовых телефонах и портативных компьютерах) и имеют низкий саморазряд (для современных батарей – всего 2-5% в месяц). Как и все аккумуляторы, литиевые подвержены старению, но в меньшей степени, чем многие конкуренты, – и через 2 года батарея сохраняет более 80% емкости.

Однако для Li-Ion-технологий по-прежнему требуется обеспечение техники безопасности, поэтому каждый пакет аккумуляторов должен быть оборудован электрической схемой управления, чтобы ограничить пиковое напряжение каждого элемента во время заряда, а также предотвратить понижение напряжения элемента при разряде ниже допустимого уровня для долговечной работы батарей. Кроме того, следует ограничить максимальный ток заряда и разряда и контролировать температуру элемента. Эти меры приводят к удорожанию аккумуляторов на основе лития, что и является главным препятствием их более широкого распространения, не говоря уж о высокой стоимости как самого лития, так и технологии производства таких батарей (необходимы инертная атмосфера, очистка неводных растворителей и т.д.).

Таким образом, литий-ионные аккумуляторы являются самыми дорогими из доступных сегодня на рынке, и в этом их главный недостаток. Однако рынок литиевых элементов и батарей малой емкости, где цена не оказывает столь существенного влияния, постоянно расширяется, появляются все новые и новые области для их использования, так что, по общему мнению, литий-ионные аккумуляторы на сегодня самые перспективные.

В 1991 году фирма Sony Energetic впервые начала коммерческое производство литий-ионных аккумуляторов и в настоящее время является одним из самых крупных поставщиков. Отметим, что по материалу отрицательного электрода литий-ионные аккумуляторы можно разделить на два основных типа: с отрицательным электродом на основе кокса (технология Sony) и на основе графита. Источники тока с отрицательным электродом на основе графита имеют более плавную разрядную кривую с резким падением напряжения в конце цикла разряда по сравнению с более пологой разрядной кривой аккумулятора с коксовым (сажевым) электродом. Поэтому в целях получения максимально возможной емкости конечное напряжение разряда аккумуляторов с коксовым (сажевым) отрицательным электродом обычно устанавливают ниже, чем на аккумуляторах с графитовым электродом. Так, аналогичные по формфактору литий-ионные аккумуляторы одной и той же компании с номинальным напряжением 3,6 В – это, как правило, аккумуляторы с сажевым электродом, а 3,7 В – с графитовым, то есть производители специально вводят различия по номинальному напряжению, чтобы уравнять характеристики. Сегодня все больше производителей выпускают Li-Ion-аккумуляторы с графитовым отрицательным электродом, которые способны обеспечить более высокий ток нагрузки и меньший нагрев во время заряда-разряда, чем коксовые аккумуляторы.

К-во Просмотров: 194
Бесплатно скачать Контрольная работа: Системы распознания текста и ввода данных