Контрольная работа: Современная технология обработки информационных данных Data Mining

Проиллюстрируем современное состояние данного подхода на примере системы PolyAnalyst - отечественной разработке, получившей сегодня общее признание на рынке Data Mining. В данной системе гипотезы о виде зависимости целевой переменной от других переменных формулируются в виде программ на некотором внутреннем языке программирования. Процесс построения программ строится как эволюция в мире программ (этим подход немного похож на генетические алгоритмы). Когда система находит программу, более или менее удовлетворительно выражающую искомую зависимость, она начинает вносить в нее небольшие модификации и отбирает среди построенных дочерних программ те, которые повышают точность. Таким образом система "выращивает" несколько генетических линий программ, которые конкурируют между собой в точности выражения искомой зависимости. Специальный модуль системы PolyAnalyst переводит найденные зависимости с внутреннего языка системы на понятный пользователю язык (математические формулы, таблицы и пр).

Другое направление эволюционного программирования связано с поиском зависимости целевых переменных от остальных в форме функций какого-то определенного вида. Например, в одном из наиболее удачных алгоритмов этого типа - методе группового учета аргументов (МГУА) зависимость ищут в форме полиномов. В настоящее время из продающихся в России систем МГУА реализован в системе NeuroShell компании Ward Systems Group.

Стоимость систем до $ 5000.

4.7 Генетические алгоритмы

Data Mining не основная область применения генетических алгоритмов. Их нужно рассматривать скорее как мощное средство решения разнообразных комбинаторных задач и задач оптимизации. Тем не менее генетические алгоритмы вошли сейчас в стандартный инструментарий методов Data Mining, поэтому они и включены в данный обзор.

Первый шаг при построении генетических алгоритмов - это кодировка исходных логических закономерностей в базе данных, которые именуют хромосомами, а весь набор таких закономерностей называют популяцией хромосом. Далее для реализации концепции отбора вводится способ сопоставления различных хромосом. Популяция обрабатывается с помощью процедур репродукции, изменчивости (мутаций), генетической композиции. Эти процедуры имитируют биологические процессы. Наиболее важные среди них: случайные мутации данных в индивидуальных хромосомах, переходы (кроссинговер) и рекомбинация генетического материала, содержащегося в индивидуальных родительских хромосомах (аналогично гетеросексуальной репродукции), и миграции генов. В ходе работы процедур на каждой стадии эволюции получаются популяции со все более совершенными индивидуумами.

Генетические алгоритмы удобны тем, что их легко распараллеливать. Например, можно разбить поколение на несколько групп и работать с каждой из них независимо, обмениваясь время от времени несколькими хромосомами. Существуют также и другие методы распараллеливания генетических алгоритмов.

Генетические алгоритмы имеют ряд недостатков. Критерий отбора хромосом и используемые процедуры являются эвристическими и далеко не гарантируют нахождения "лучшего" решения. Как и в реальной жизни, эволюцию может "заклинить" на какой-либо непродуктивной ветви. И, наоборот, можно привести примеры, как два неперспективных родителя, которые будут исключены из эволюции генетическим алгоритмом, оказываются способными произвести высокоэффективного потомка. Это особенно становится заметно при решении высокоразмерных задач со сложными внутренними связями.

Примером может служить система GeneHunter фирмы Ward Systems Group. Его стоимость - около $1000.

4.8 Алгоритмы ограниченного перебора

Алгоритмы ограниченного перебора были предложены в середине 60-х годов М.М. Бонгардом для поиска логических закономерностей в данных. С тех пор они продемонстрировали свою эффективность при решении множества задач из самых различных областей.

Эти алгоритмы вычисляют частоты комбинаций простых логических событий в подгруппах данных. Примеры простых логических событий: X = a; X < a; X a; a < X < b и др., где X - какой либо параметр, "a" и "b" - константы. Ограничением служит длина комбинации простых логических событий (у М. Бонгарда она была равна 3). На основании анализа вычисленных частот делается заключение о полезности той или иной комбинации для установления ассоциации в данных, для классификации, прогнозирования и пр.

Наиболее ярким современным представителем этого подхода является система WizWhy предприятия WizSoft. Хотя автор системы Абрахам Мейдан не раскрывает специфику алгоритма, положенного в основу работы WizWhy, по результатам тщательного тестирования системы были сделаны выводы о наличии здесь ограниченного перебора (изучались результаты, зависимости времени их получения от числа анализируемых параметров и др.).

Автор WizWhy утверждает, что его система обнаруживает ВСЕ логические if-then правила в данных. На самом деле это, конечно, не так. Во-первых, максимальная длина комбинации в if-then правиле в системе WizWhy равна 6, и, во-вторых, с самого начала работы алгоритма производится эвристический поиск простых логических событий, на которых потом строится весь дальнейший анализ. Поняв эти особенности WizWhy, нетрудно было предложить простейшую тестовую задачу, которую система не смогла вообще решить.

Другой момент - система выдает решение за приемлемое время только для сравнительно небольшой размерности данных.

Тем не менее, система WizWhy является на сегодняшний день одним из лидеров на рынке продуктов Data Mining.

Это не лишено оснований. Система постоянно демонстрирует более высокие показатели при решении практических задач, чем все остальные алгоритмы. Стоимость системы около $ 4000, количество продаж - 30000.

Рисунок 7. Система WizWhy обнаружила правила, объясняющие низкую урожайность некоторых сельскохозяйственных участков

4.9 Системы для визуализации многомерных данных

В той или иной мере средства для графического отображения данных поддерживаются всеми системами Data Mining. Вместе с тем, весьма внушительную долю рынка занимают системы, специализирующиеся исключительно на этой функции. Примером здесь может служить программа DataMiner 3D словацкой фирмы Dimension5 (5-е измерение).

В подобных системах основное внимание сконцентрировано на дружелюбности пользовательского интерфейса, позволяющего ассоциировать с анализируемыми показателями различные параметры диаграммы рассеивания объектов (записей) базы данных. К таким параметрам относятся цвет, форма, ориентация относительно собственной оси, размеры и другие свойства графических элементов изображения. Кроме того, системы визуализации данных снабжены удобными средствами для масштабирования и вращения изображений. Стоимость систем визуализации может достигать нескольких сотен долларов.

Рисунок 8. Визуализация данных системой DataMiner 3D

5. Резюме

1. Рынок систем Data Mining экспоненциально развивается. В этом развитии принимают участие практически все крупнейшие корпорации (см. например http://www.kdnuggets.com). В частности, Microsoft непосредственно руководит большим сектором данного рынка (издает специальный журнал, проводит конференции, разрабатывает собственные продукты).

2. Системы Data Mining применяются по двум основным направлениям:

1) как массовый продукт для бизнес-приложений;

2) как инструменты для проведения уникальных исследований (генетика, химия, медицина и пр.). В настоящее время стоимость массового продукта от $1000 до $10000. Количество инсталляций массовых продуктов, судя по имеющимся сведениям, сегодня достигает десятков тысяч. Лидеры Data Mining связывают будущее этих систем с использованием их в качестве интеллектуальных приложений, встроенных в корпоративные хранилища данных.

3. Несмотря на обилие методов Data Mining, приоритет постепенно все более смещается в сторону логических алгоритмов поиска в данных if-then правил. С их помощью решаются задачи прогнозирования, классификации, распознавания образов, сегментации БД, извлечения из данных "скрытых" знаний, интерпретации данных, установления ассоциаций в БД и др. Результаты таких алгоритмов эффективны и легко интерпретируются.

4. Вместе с тем, главной проблемой логических методов обнаружения закономерностей является проблема перебора вариантов за приемлемое время. Известные методы либо искусственно ограничивают такой перебор (алгоритмы КОРА, WizWhy), либо строят деревья решений (алгоритмы CART, CHAID, ID3, See5, Sipina и др.), имеющих принципиальные ограничения эффективности поиска if-then правил. Другие проблемы связаны с тем, что известные методы поиска логических правил не поддерживают функцию обобщения найденных правил и функцию поиска оптимальной композиции таких правил. Удачное решение указанных проблем может составить предмет новых конкурентоспособных разработок.

Литература

1. Айвазян С.А., Бухштабер В.М., Юнюков И.С., Мешалкин Л.Д. Прикладная статистика: Классификация и снижение размерности. - М.: Финансы и статистика, 1989.

2. Knowledge Discovery Through Data Mining: What Is Knowledge Discovery? - Tandem Computers Inc., 1996.

К-во Просмотров: 228
Бесплатно скачать Контрольная работа: Современная технология обработки информационных данных Data Mining