Контрольная работа: Современное состояние нефтехимического синтеза Основные продукты и технологии
Одной из наиболее серьезных проблем, затрудняющих применение добавок метанола, является низкая стабильность бензино-метанольных смесей и чувствительность их к присутствию воды. Различие плотностей бензина и метанола и высокая растворимость последнего в воде приводят к тому, что попадание даже небольших количеств воды в смесь вызывает ее немедленное расслоение, причем склонность к расслоению усиливается с понижением температуры, увеличением концентрации воды и уменьшением содержания ароматических соединений в бензине. Для стабилизации бензино-метанольных смесей используют присадки – пропанол, изопропанол, изобутанол и другие спирты.
1.4 Топливо из биомассы
Весьма перспективным возобновляемым сырьем является биомасса. Она может быть использована для получения этанола в качестве альтернативного топлива. Подсчитано, что ежегодно выращивается и вырастает в дикой природе столько биомассы, что из нее можно вырабатывать энергии в восемь раз больше, чем в настоящее время дает все топливо из ископаемого сырья. Исследования, направленные на создание производства жидких топлив из возобновляемого сырья растительного происхождения, в последние годы расширяются.
Биоэтанол и биобутанол получают ферментационным путем. В качестве сырья для ферментации может быть использован широкий набор углеводных материалов: сахара, крахмал, целлюлоза и др. Основу производства биоэтанола из крахмала составляют две стадии: гидролиз крахмала до глюкозы под действием ферментов и ферментация глюкозы до этанола. Существенный недостаток этой технологии связан с тем, что при повышении концентрации этанола в реакционной смеси выше определенного уровня он начинает оказывать ингибирующее действие на процесс ферментации. Кроме того, ферментация обычно приводит к образованию ряда метаболитов, которые при повышенных концентрациях также снижают эффективность процесса.
Современные исследования по совершенствованию существующих процессов получения биоэтанола ведутся в основном по двум направлениям: разработка ферментационных систем, работающих в непрерывном режиме, и повышение производительности методов извлечения и очистки этанола с целью снижения энергозатрат на производство топливного спирта.
2. Технологии
2.1 Синтез диметилового эфира из природного газа (через метанол)
Природный газ является наиболее простым и доступным сырьем для синтеза диметилового эфира и, соответственно, процесс получения ДМЭ на базе природного газа имеет наилучшие экономические показатели. В настоящее время промышленное производство ДМЭ (наполнитель для аэрозолей) составляет ок. 150 тыс. т. в год и базируется на переработке метанола. Упрощенно схему производства ДМЭ на основе природного газа через синтез и последующую дегидратацию метанола можно представить в виде схемы 2.
Схема 2 Схема синтеза ДМЭ из природного газа через стадии синтеза и дегидратации метанола
Рассмотрим отдельные стадии этого синтеза.
Конверсия метана.
Конверсия метана (риформинг) в синтез-газ – это высокотемпературный процесс, который может быть осуществлен по разным реакциям (с участием различных реагентов). Среди них:
· паровая конверсия CH4+H2O=CO+3H2 (1)
· углекислотная конверсия CH4+CO2+2CO+2H2 (2)
· неполное окисление CH4+1/2O2=CO+2H2 (3)
Реакции (1) и (2) сильно эндотермичны, поэтому получил распространение автотермический риформинг – паровой риформинг в присутствии кислорода. К протекающим в условиях автотермического риформинга реакциям (1) и (3) добавляются сильно экзотермические реакции полного окисления:
CH4+2O2=CO2+2H2O (4)
H2+1/2O2=H2O (5)
CO+1/2O2=CO2 (6)
Эти процессы обеспечивают компенсацию потерь тепла в реакции (1), но приводят к дополнительным затратам сырья.
Синтез-газ представляет собой смесь СО и водорода с небольшим количеством СО2, в котором также может присутствовать азот. Важнейшей характеристикой синтез-газа является соотношение концентраций Н2:СО. Для синтеза метанола это отношение должно быть больше двух, что делает неизбежным использование парового риформинга (реакция 1).
Условия проведения риформинга являются результатом компромисса между требованиями термодинамики (повышение температуры и снижение давления для увеличения равновесной конверсии метана), экономики и материаловедения. При высокой температуре (800-900 ºС) и не слишком высокой давлении (1-3 МПа) термодинамика процесса благоприятна, что позволяет довести реакцию до превращения, близкого к полному. Достигнутый компромисс приводит к тому, что в процессе синтеза метанола стадия риформинга требует примерно 2/3 капитальных вложений и более половины эксплуатационных расходов. Это обстоятельство обусловило поиск новых путей превращения природного газа в синтез-газ.
Прямое газофазное селективное окисление метана в СО и Н2, т.е. в синтез-газ (реакция 3), явилось бы наиболее простым из альтернативных методов, однако селективность этого процесса в удобных для практики условиях низка (на уровне 50%). Высокая селективность может быть достигнута при высоких температурах (ок. 1500 К), когда равновесие благоприятно именно для образования синтез-газа. Однако проведение процесса при таких температурах сопряжено с рядом трудностей, обусловленных очень жесткими требованиями к материалу реактора, контактирующего с коррозийно активной средой при высокой температуре, и сложностью управления процессом, поскольку закономерности горения "богатых" смесей относительно мало изучены.
Возникает также вопрос, что использовать в качестве окислителя. Если окислять метан чистым кислородом, возрастают капиталовложения и стоимость синтез-газа, а если использовать воздух, то получается "бедный" синтез-газ низкого качества с большим содержанием азота (не менее 50-60% об.).
В последние годы появилось несколько отечественных разработок, в которых предлагаются новые решения аппаратурного оформления процесса высокотемпературного селективного окисления природного газа в синтез-газ.
Синтез метанола.
Промышленный синтез метанола из синтез-газа до 60-х гг. прошлого века базировался на цинкхромовых катализаторах, несмотря на относительно низкую селективность и довольно жесткие условия процесса (температура 400 ºС и давление 30 МПа). Промышленное применение высокоселективных медьсодержащих катализаторов задержалось из-за их повышенной чувствительности к отравлению соединениями серы и стало возможным лишь после развития методов сероочистки. Начиная с 1960-х гг., технология высокоселективного синтеза метанола с использованием медьсодержащих катализаторов, в первую очередь Cu-Zn-Al-оксидных, введенных в промышленную практику фирмой ICI и "HaldorTopsoe", в СССР – СНМ.
Современные катализаторы синтеза метанола близки к идеалу, если не считать постепенной из дезактивации в ходе эксплуатации и высокой чувствительности к каталитическим ядам. Они позволяют осуществлять процесс при относительно низкой температуре (220-280 ºС) и умеренном давлении (5-10 МПа) и обеспечивают высокую селективность – содержание суммы примесей в метаноле обычно не превышает 0,1 %.