Контрольная работа: Способы представления знаний

Для представления знаний можно использовать семантические сети. Каждый узел такой сети представляет концепцию, а дуги используются для определения отношений между концепциями. Одна из самых выразительных и детально описанных парадигм представления знаний основанных на семантических сетях это MultiNet (акроним для Многослойные Расширенные Семантические Сети англ. Multilayered Extended Semantic Networks).

Начиная с 1960-х годов, использовалось понятие фрейма знаний или просто фрейма. Каждый фрейм имеет своё собственное имя и набор атрибутов, или слотов которые содержат значения; например фрейм дом мог бы содержать слоты цвет, количество этажей и так далее.

Использование фреймов в экспертных системах является примером объектно-ориентированного программирования, с наследованием свойств, которое описывается связью «is-a». Однако, в использовании связи «is-a» существовало немало противоречий: Рональд Брахман написал работу озаглавленную «Чем является и не является IS-A», в которой были найдены 29 различных семантик связи «is-a» в проектах, чьи схемы представления знаний включали связь «is-a». Другие связи включают, например, «has-part».

Фреймовые структуры хорошо подходят для представления знаний, представленных в виде схем и стереотипных когнитивных паттернов. Элементы подобных паттернов обладают разными весами, причем большие весы назначаются тем элементам, которые соответствую текущей когнитивной схеме (schema). Паттерн активизируется при определённых условиях: Если человек видит большую птицу, при условии что сейчас активна его «морская схема», а «земная схема» - нет, он классифицирует её скорее как морского орлана, а не сухопутного беркута.

Фреймовые представления объектно-центрированы в том же смысле что и Семантическая сеть: Все факты и свойства, связанные с одной концепцией, размещаются в одном месте, поэтому не требуется тратить ресурсы на поиск по базе данных.

Скрипт это тип фреймов, который описывает последовательность событий во времени; типичный пример описание похода в ресторан. События здесь включают ожидание места, прочитать меню, сделать заказ, и так далее.

Различные решения в зависимости от их семантической выразительности могут быть организованы в так называемый семантический спектр (англ. Semantic spectrum).

1.3 Язык и нотация

Некоторые люди считают, что лучше всего будет представлять знания также как они представлены в человеческом разуме, который является единственным известным на сегодняшний день работающим разумом, или же представлять знания в форме естественного языка. Доктор Ричард Баллард, например, разработал «семантическую систему, базирующуюся на теории», которая не зависит от языка, которая выводит цель и рассуждает теми же концепциями и теориями что и люди. Формула, лежащая в основе этой семантики: Знание=Теория+Информация. Большинство распространенных приложений и систем баз данных основаны на языках. К несчастью, мы не знаем как знания представляются в человеческом разуме, или как манипулировать естественными языками также как это делает человек. Одной из подсказок является то, что приматы знают как использовать интерфейсы пользователя point and click; таким образом интерфейс жестов похоже является частью нашего когнитивного аппарата, модальность которая не привязана к устному языку, и которая существует в других животных кроме человека.

Поэтому для представления знаний были предложены различные искусственные языки и нотации. Обычно они основаны на логике и математике, и имеют легко читаемую грамматику для облегчения машинной обработки. Обычно они попадают в широкую область онтологий.

Нотация.

Последней модой в языках представления знаний является использование XML в качестве низкоуровневого синтаксиса. Это приводит к тому, что вывод этих языков представления знаний машины могут легко Синтаксический анализ, за счёт Удобочитаемости для человека. Логика первого порядка и язык Пролог широко используется в качестве математической основы для этих систем, чтобы избежать избыточной сложности. Однако даже простые системы основанные на этой простой логике можно использовать для представления данных которое значительно лучше возможностей обработки для нынешних компьютерных систем: причины раскрываются в теории вычислимости.

Примеры нотаций:

DATR является примером представления лексических знаний

RDF является простой Нотация для представления отношений между и среди объектов

Языки

Примеры искусственных языков которые используются преимущественно для представления знаний:

CycL

IKL

KIF

Loom

OWL

KM: Машина Знаний (англ. Knowledge Machine) (фреймовый язык, использовавшийся для задач представления знаний)

язык Пролог

Глава 2. Модели представления знаний. Неформальные (семантические) модели

2.1 Методы представления знаний

Существуют два типа методов представления знаний (ПЗ):

Формальные модели ПЗ;

Неформальные (семантические, реляционные) модели ПЗ.

Очевидно, все методы представления знаний, которые рассмотрены выше, включая продукции (это система правил, на которых основана продукционная модель представления знаний), относятся к неформальным моделям. В отличие от формальных моделей, в основе которых лежит строгая математическая теория, неформальные модели такой теории не придерживаются. Каждая неформальная модель годится только для конкретной предметной области и поэтому не обладает универсальностью, которая присуща моделям формальным. Логический вывод - основная операция в СИИ - в формальных системах строг и корректен, поскольку подчинен жестким аксиоматическим правилам. Вывод в неформальных системах во многом определяется самим исследователем, который и отвечает за его корректность.

Каждому из методов ПЗ соответствует свой способ описания знаний.

1. Логические модели. В основе моделей такого типа лежит формальная система, задаваемая четверкой вида: M = <T, P, A, B>. Множество T есть множество базовых элементов различной природы, например слов из некоторого ограниченного словаря, деталей детского конструктора, входящих в состав некоторого набора и т.п. Важно, что для множества T существует некоторый способ определения принадлежности или непринадлежности произвольного элемента к этому множеству. Процедура такой проверки может быть любой, но за конечное число шагов она должна давать положительный или отрицательный ответ на вопрос, является ли x элементом множества T. Обозначим эту процедуру П(T).

К-во Просмотров: 278
Бесплатно скачать Контрольная работа: Способы представления знаний