Контрольная работа: Стандарты качества нефтяных масел в мире
Выполнил:
студент Шапошникова А.О.
группы 6171
Проверил:
Альметьевск 2007
Содержание
Введение………………………………………………………………………..3
Смазочно-охлаждающие жидкости и нефтяные масла……………………..4
Классификация нефтяных масел и область их применения………………..6
Трансформаторные масла……………………………………………………..9
Заключение…………………………………………………………………...14
Литература……………………………………………………………………15
Введение
Современные транспортные средства, внедорожная техника, промышленное оборудование, энергетические агрегаты спроектированы так, чтобы обеспечить малые материало- и энергозатраты при их изготовлении, большой ресурс и надежность при минимальных эксплуатационных затратах и объеме технического обслуживания, выполнение все более ужесточающихся требований экологических нормативных актов. Полная реализация технико-экономического потенциала, заложенного в машины, двигатели, станки, трансмиссии, возможна только при непременном использовании для их смазывания высококачественных смазочных материалов, полностью соответствующих по всему спектру эксплуатационных свойств условиям их применения. Современные смазочные материалы способны длительно выдерживать высокие механические и термические нагрузки, обеспечивать снижение энергопотребления и защиту от износа, коррозии и образования отложений, нарушающих нормальную работу смазываемого оборудования. Высокие эксплуатационные свойства масел, смазок, гидрожидкостей достигнуты в большей мере их легированием специальными присадками различного функционального действия. Варьированием состава базовых компонентов, композиций присадок и содержания последних в конечном продукте разработчики смазочных материалов достигают выполнения разнообразных требований к их продукции со стороны машиностроителей, формируют широкий ассортимент смазочных материалов с дифференцированными свойствами для решения многообразных, иногда весьма специфических, задач смазывания изделий машиностроения.
Сегодня формирование требований к физико-химическим и эксплуатационным свойствам смазочных материалов основывается на широко известных и практически применяемых классификациях и спецификациях, в которых важнейшие характеристики смазочных материалов заданы в виде результатов испытаний по известным (в большинстве случаев стандартизованным) методам. Это позволяет всем заинтересованным сторонам (изготовителям смазочных материалов, машиностроителям, потребителям их продукции) обмениваться достаточно полной и единообразно понимаемой информацией о свойствах смазочных материалов, целесообразном их использовании.
Смазочно-охлаждающие жидкости и нефтяные масла
Масла нефтяные, смеси высокомолекулярных углеводородов, получаемые из нефти и применяемые в основном в качестве смазочных материалов. масла нефтяные используются также как гидравлические и смазочно-охлаждающие жидкости, электроизоляционные среды, поверхностно-активные вещества, мягчители, компоненты пластичных смазок, лекарственных препаратов и др. Существует две основные системы классификации масла нефтяные: по способу их производства и по областям применения. По способу производства масла нефтяные делят на дистиллятные, получаемые вакуумной перегонкой мазутов; остаточные, получаемые из деасфальтизированных масляных гудронов, и компаундированные - подобранные по вязкости и другим показателям смеси дистиллятных и остаточных масел.
Современные процессы производства (включающие вакуумную перегонку, деасфальтизацию, селективную очистку, депарафинизацию, контактную или гидродоочистку) обеспечивают достаточно полное извлечение масляных фракций из нефти, необходимую их очистку и требуемые физико-химические свойства; при этом качество масел зависит от химического состава и свойств исходной нефти. Перспективные, каталитические процессы получения масел (гидрокрекинг, гидроизомеризация, алкилирование, полимеризация и другие) позволяют получать масла заданных химического состава и свойств, с более высоким выходом из перерабатываемого сырья. Для производства масла нефтяные в СССР используются в основном сернистые нефти Урало-Волжского района (ромашкинская, мухановская, туймазинская и другие) и нефти Западной Сибири (усть-балыкская, самотлорская и другие). Эти нефти по своему химическому составу и свойствам (см. Нефть) обеспечивают получение масел с высокими эксплуатационными качествами. Перспективной для производства масел является также мангышлакская нефть.
По областям применения масла нефтяные разделяются на моторные масла, реактивные масла, трансмиссионные масла, индустриальные масла, цилиндровые масла (для паровых машин), электроизоляционные масла, технологические масла и так называемые белые масла, используемые в медицине и парфюмерии. Первые 5 из перечисленных групп относятся к смазочным маслам, остальные - к несмазочным маслам.
Для каждого вида масел разработан и строго нормируется стандартами перечень физико-химических свойств, зависящий от условий использования. Существует, однако, ряд характеристик, относящихся практически ко всем масла нефтяные Это прежде всего вязкость (или внутреннее трение), измеряемая обычно при температурах 50 и 100 °С. Диапазон колебания вязкостей товарных масел очень велик - от 2,0 - 2,5 сст (1 сст = 10-6 м2/сек) при 100 °С у лёгких индустриальных масел до 60 - 70 сст у тяжёлых цилиндровых. Для масел, используемых в арктических условиях ("северные масла"), вязкость определяется также и при отрицательных температурах, -40 °С и ниже; важным показателем для них является так называемый индекс вязкости, характеризующий температурную зависимость вязкости. Температура застывания масла нефтяные может быть от 17 °С у тяжёлых цилиндровых до минус 45-60 °С у некоторых моторных и индустриальных. Эту характеристику следует учитывать при выборе условий транспортировки, хранения и использования смазочных продуктов. Допустимый высокотемпературный предел использования масла нефтяные косвенно характеризуется температурой вспышки. Важный показатель для масла нефтяные - фракционный состав, однако для подавляющего большинства масла нефтяные, в том числе моторных, он техническими стандартами не нормируется. Основным показателем электроизоляционных масел являются высокие диэлектрические свойства, характеризуемые прежде всего тангенсом угла диэлектрических потерь.
Большинство масла нефтяные должно обладать также малой зольностью, высокой стойкостью к окислению. Эти показатели связаны с противоизносными, антинагарными и коррозионными свойствами масел.
Для использования в современных двигателях и машинах с высокими скоростями, нагрузками и температурами масла нефтяные необходимо легировать различными добавками, присадками, улучшающими эксплуатационные качества масел (понижающими температуру застывания, повышающими противоизносные и диспергирующие свойства и так далее). Практически все товарные масла содержат присадки или их композиции в количестве от 0,5-1,0 до 25 % и более.
В ряде случаев вместо масла нефтяные используются синтетические масла, имеющие более высокие технические характеристики.
Классификация нефтяных масел и область их применения
Международная электротехническая комиссия (МЭК) разработала стандарт (Публикация 296) “Спецификация на свежие нефтяные изоляционные масла для трансформаторов и выключателей”. Стандарт предусматривает три класса трансформаторных масел: I - для южных районов (с температурой застывания не выше -30°С), II -для северных районов (с температурой застывания не выше -45°С), III -для арктических районов (с температурой застывания не выше -60°С). Буква А в обозначении класса указывает па то, что масло содержит ингибитор окисления, отсутствие буквы означает, что масло не ингибировано.
Компрессорные масла общего назначения
Марка (ГОСТ; ТУ) | Область применения |
КС-19(ГОСТ 9243-75) | Предназначено для смазывания поршневых компрессоров среднего и высокого давления. |
К-19(ГОСТ 1861-73) | Предназначено для смазывания поршневых компрессоров среднего и высокого давления технологических установок, где требуются масла с низким содержанием серы. |
КС-19п(ТУ 38.4011055-97) | Предназначено для смазывания поршневых компрессоров среднего и высокого давления. Содержит антиокислительную присадку ионол, что позволяет увеличить срок до замены масла. |
К2-24(ТУ 38.401-58-43-92) | Применяют для смазывания многоступенчатых поршневых компрессоров высокого давления, в том числе компрессоров воздухоразделительных установок. |
К4-20(ТУ 38.101759-78) | Пpeднaзнaчeню для смазывания поршневых корабельных воздушных компрессоров высокого давления с единой системой смазки цилиндров и механизма движения. |
КЗ-20(ТУ 38.401700-88) | Предназначено для смазывания теплонапряженных поршневых компрессоров высокого давления. |
КЗ-10(ТУ 38.401724-88) | Предназначено для смазывания поршневых компрессоров с температурой нагнетания до 200°С, а также ротационных компрессоров. |
Кп-8с(ТУ 38.1011296-90) | Для турбокомпрессоров и винтовых компрессоров, перекачивающих воздух, азот, аммиак и другие газы. |
Масла для компрессоров холодильных машин
Марка (ГОСТ; ТУ) | Область применения |
ХА-30(ГОСТ 5546-86) | Минеральное масло для компрессоров холодильных машин. Не допускает хлопьеобразования (выпадение хлопьев парафина в осадок) в растворе хладона R-12 при температуре не ниже 40°С, в R-22 не ниже 60°С, Рекомендуемый холодильный агент - аммиак. |
ХФ12-16(ГОСТ 5546-86) | Минеральное масло для компрессоров холодильных машин. Не допускает хлопьеобразования (выпадение хлопьев парафина в осадок) в растворе хладона R-12 при температуре не ниже 50°С, в R-22 не ниже 10°С. Рекомендуемый холодильный агент - R-12. |
ХФ22-24(ГОСТ 5546-86) | Минеральное масло для компрессоров холодильных машин. Не допускает хлопьеобразования (выпадение хлопьев парафина в осадок) в растворе хладона R-12 при температуре не ниже 44°С, в R-22 не ниже 15°С. Рекомендуемый холодильный агент - R-22 |
ХФ22с-16(ГОСТ 5546-86) | Синтетическое масло для компрессоров холодильных машин. Не допускает хлопьеобразования (выпадение хлопьев парафина в осадок) в растворе хладона R-12 при температуре не ниже 70°С, в R-22 не образуется. Рекомендуемый холодильный агент - R-22. |
Турбинные масла
Марка (ГОСТ; ТУ) | Область применения |
Тп-22с(ТУ 38.101821-83) | Предназначено для высокооборотных паровых турбин, а также центробежных и турбокомпрессоров в тех случаях, когда вязкость масла обеспечивает необходимые противоизносные свойства. Является наиболее распространенным турбинным маслом. |
Тп-22Б(ТУ 38.401-58-48-92) | По сравнению с маслом Тп-22с обладает усиленными антиокислительными свойствами, большим сроком службы, меньшей склонностью к осадкообразованию при работе в оборудовании. Не имеет заменителей среди отечественных сортов турбинных масел при применении в турбокомпрессорах крупных производств аммиака. |
Тп-30(ГОСТ 9972-74) | Применяют для гидротурбин, некоторых турбо- и центробежных компрессоров. |
Тп-46(ГОСТ 9972-74) | Для судовых паросиловых установок с тяжелонагруженными редукторами и вспомогательных механизмов. |
Трансформаторные масла
Марка (ГОСТ; ТУ) | Область применения |
Т-1500(ГОСТ 982-80) | Рекомендовано к применению в электрооборудовании напряжением до 1500кВ и выше. Обладает улучшенной стабильностью против окисления, 6 имеет невысокое содержание сернистых соединений, низкое значение тангенса угла диэлектрических потерь. |
ГК(ТУ 38.101025-85) | Рекомендовано к применению в электрооборудовании высших классов напряжения (свыше 1500кВ). Удовлетворяет требованиям стандарта МЭК 296 к маслам класса ПА. |
ВГ(ТУ 38.401978-98) | Рекомендовано к применению в электрооборудовании высших классов напряжения (свыше 1500кВ). Удовлетворяет требованиям стандарта МЭК 296 к маслам класса ПА. |
Масло селективной очистки(ГОСТ 10121-76) | Рекомендуемая область применения - оборудование напряжением до 220кВ включительно. |
ТКп(ТУ 38.401-58-49-92) | Рекомендуемая область применения - оборудование напряжением до 500кВ включительно. |
Показатели пробивного напряжения в зависимости от рабочего напряжения оборудования должны быть равны (кВ):
Рабочее напряжение оборудования | Пробивное напряжение масла (кВ) |
До 15 (вкл.) | 30 |
Св. 15 до 35 (вкл.) | 35 |
От 60 до 150 (вкл.) | 55 |
От 220 до 500 (вкл.) | 60 |
750 | 65 |
Трансформаторные масла
Трансформаторные масла применяют для заливки силовых и измерительных трансформаторов, реакторного оборудования, а также масляных выключателей. В последних аппаратах масла выполняют функции дугогасящей среды.
Общие требования и свойства. Электроизоляционные свойства масел определяются в основном тангенсом угла диэлектрических потерь. Диэлектрическая прочность трансформаторных масел в основном определяется наличием волокон и воды, поэтому механические примеси и вода в маслах должны полностью отсутствовать. Низкая температура застывания масел (-45 °С и ниже) необходима для сохранения их подвижности в условиях низких температур. Для обеспечения эффективного отвода тепла трансформаторные масла должны обладать наименьшей вязкостью при температуре вспышки не ниже 95, 125, 135 и 150 °С для разных марок.
Наиболее важное свойство трансформаторных масел - стабильность против окисления, т. е. способность масла сохранять параметры при длительной работе. В России все сорта применяемых трансформаторных масел ингибированы антиокислительной присадкой - 2,6-дитретичным бутилпаракрезолом (известным также под названиями ионол, агидол-1 и др.). Эффективность присадки основана на ее способности взаимодействовать с активными пероксидными радикалами, которые образуются при цепной реакции окисления углеводородов и являются основными ее носителями. Трансформаторные масла, ингибированные ионолом, окисляются, как правило, с ярко выраженным индукционным периодом.
В первый период масла, восприимчивые к присадкам, окисляются крайне медленно, так как все зарождающиеся в объеме масла цепи окисления обрываются ингибитором окисления. После истощения присадки масло окисляется со скоростью, близкой к скорости окисления базового масла. Действие присадки тем эффективнее, чем длительнее индукционный период окисления масла, и эта эффективность зависит от углеводородного состава масла и наличия примесей неуглеводородных соединений, промотирующих окисление масла (азотистых оснований, нафтеновых кислот, кислородсодержащих продуктов окисления масла).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--