Контрольная работа: Статистическая обработка результатов прямых многоразовых измерений с независимыми равноточными

Проведём интерполяцию:

Y(d )=0.8901+0.8(0.8827-0.8901)=0.8901-0.0059=0.8842

Для n=30,P=0.99

26 0.7040
30 У
31 0.7110

Проведём интерполяцию:

Y( )=0,7040+0,8(0,7110-0,7040)=0,7040+0,0056=0,7096


0,7096<0,8643<0,8842

Распределение результатов наблюдений соответствует критерию I.

По критерию II, распределение результатов наблюдений соответствует нормальному закону распределения, если не более m разностей превзошли значение

,

где (В) – несмещенная оценка СКО результатов наблюдений Ui ;

- верхняя квантиль распределения интегральной функции нормированного нормального распределения, соответствующая доверительной вероятности Р2 . Значение m и Р2 находим по числу наблюдений n и уровню значимости α2 для критерия II по таблице П.2 приложения. m=2, Р2 =0,99. Затем вычисляем:

По таблице П.3 приложения интегральной функции нормированного нормального распределения находят , соответствующее вычисленному значению функции Ф(): при Ф()=0,995;=2,82;

=2,82*0,2597=0,7323 (В).


Ни одно значение не превосходит величину , следовательно распределение результатов наблюдений удовлетворяет и критерию II, поэтому экспериментальный закон распределения соответствует нормальному закону.

Проведём проверку грубых погрешностей результатов наблюдений (оценки анормальности отдельных результатов наблюдений). Для этого:

а) Составим упорядоченный ряд результатов наблюдений, расположив исходные элементы в порядке возрастания, и выполним их перенумерацию:

Таблица 4

U(1)=169.59 U(16)=169.95
U(2)=169.60 U(17)=169.95
U(3)=169.67 U(18)=170.01
U(4)=169.73 U(19)=170.02
U(5)=169.73 U(20)=170.17
U(6)=169.74 U(21)=170.20
U(7)=169.76 U(22)=170.20
U(8)=169.77 U(23)=170.21
U(9)=169.83 U(24)=170.26
U(10)=169.84 U(25)=170.30
U(11)=169.84 U(26)=170.33
U(12)=169.88 U(27)=170.35
U(13)=169.91 U(28)=170.35
U(14)=169.95 U(29)=170.41
U(15)=169.95 U(30)=170.50

б) Для крайних членов упорядоченного ряда U1 и U15 , которые наиболее удалены от центра распределения (определяемого как среднее арифметическое Ū этого рядя) и поэтому с наибольшей вероятностью могут содержать грубые погрешности, находим модули разностей =(В) и =(В), и для большего из них вычисляем параметр:


в) Для n=30, из таблицы 4 определим =3,071.

Так как ti < tT , поэтому грубых результатов нет.

Вычислим несмещенную оценку СКО результата измерения в соответствии с выражением:

(В).

Определим доверительные границы случайной составляющей погрешности измерений с многократными наблюдениями в зависимости от числа наблюдений n 30 в выборке, не содержащей анормальных результатов, по формуле: , где Z– коэффициент по заданной доверительной вероятности Р=0,99 ; Z =2,58

(В).

Определим доверительные границы суммарной не исключённой систематической составляющей погрешности результатов измерений с многократными наблюдениями:


К-во Просмотров: 124
Бесплатно скачать Контрольная работа: Статистическая обработка результатов прямых многоразовых измерений с независимыми равноточными