Контрольная работа: Строение атомов и их ядер
,
где X* - составное ядро,
A=A1+A2, Z=Z1+Z2,
E - выделенная энергия.
Дочерние продукты радиоактивных процессов могут также претерпевать распад - так возникают цепочки радиоактивных превращений. Важной разновидностью радиоактивных превращений является т.н. спонтанное деление тяжелых ядер, открытое Флеровым и Петржаком в 1942 году. Радиоактивный распад это процесс статистический, т.е. управляемый вероятностными законамиi. Однако, в среднем, за времена большие времен характерных внутренних процессов - это вполне детерминированное явление. Так, можно записать уравнение радиоактивного распада, имеющее вид
или
где Аi- число ядер изотопа Аi в единице обьема, - константа радиоактивного распада изотопа Аi.
Величина определяет другую, часто используемую характеристику радиоактивного распада изотопов - период полураспада T1/2:
время в течение которого количество вещества за счет радиоактивного распада уменьшается в два раза.
Интенсивность радиоактивного распада измеряется в единицах, называемых "беккерель" (1 Бк = 1 распад / 1 сек). Важная единица интенсивного радиоактивного распада - кюри (1 кюри = 3,7*1010 Бк = 37 ГБк)[3] .
3. Деление ядер
Деление тяжелых ядер происходит при захвате нейтронов. При этом испускаются новые частицы и освобождается энергия связи ядра, передаваемая осколкам деления. Это фундаментальное явление было открыто в конце 30-ых годов немецкими учеными Ганом и Штрасманом, что заложило основу для практического использования ядерной энергии.
Ядра тяжелых элементов - урана, плутония и некоторых других интенсивно поглощают тепловые нейтроны. После акта захвата нейтрона, тяжелое ядро с вероятностью ~0,8 делится на две неравные по массе части, называемые осколками или продуктами деления. При этом испускаются - быстрые нейтроны/ (в среднем около 2,5 нейтронов на каждый акт деления), отрицательно заряженные бета-частиц и нейтральные гамма-кванты, а энергия связи частиц в ядре преобразуется в кинетическую энергию осколков деления, нейтронов и других частиц. Эта энергия затем расходуется на тепловое возбуждение составляющих вещество атомов и молекул, т.е. на разогревание окружающего вещества.
После акта деления ядер рожденные при делении осколки ядер, будучи нестабильными, претерпевают ряд последовательных радиоактивных превращений и с некоторым запаздыванием испускают "запаздывающие" нейтроны, большое число альфа, бета и гамма-частиц. С другой стороны некоторые осколки обладают способностью интенсивно поглощать нейтроны.
Дифференциальное уравнение превращений осколков деления можно записать в виде:
где Ai - число ядер изотопа i в единице объема ,
Q(t) - число актов деления в единице объема в единицу времени в момент t,
- выход изотопов Ai в акте деления,
- константа радиоактивного распада изотопа Ai,
- плотность потока нейтронов,
- сечение поглощения нейтронов ядрами изотопа Ai ,
- константа перехода к-того изотопа в i-тый.
Для решения этой системы уравнений нужно задать начальные условия, знать схемы и константы всех радиоактивных переходов. Суммируя по группам изотопов, имеющих тот или иной тип радиоактивности, можно определить интенсивность радиоактивного распада в функции времени. В [3] представлены детали и результаты таких расчетов.
Наиболее значимые осколки деления - Kr, Cs, I, Xe, Ce, Zr и др.
В Таблице 1 даны некоторые характеристики осколков деления