Контрольная работа: Сучасні нанотехнології

Вступ

Як відомо, питання про нанотехнології піднято на державний рівень [1], Президент РФ приділив йому особливу увагу, аж до технічних подробиць, чого не було при розгляді будь-яких інших науково-технічних програм. Ціна питання вражає – подвоєння витрат на науку. Ця обставина робить обов'язковим обговорення ефективності різних шляхів реалізації державної «соціального замовлення», або іншими словами – російського нанопроекта. І якщо цілком правомірно формулювати загальні макроекономіческіех характеристик – напрямок вектора розвитку, місце в житті країни, фінансування тощо, то науково-технічний аналіз нанопроекта в настільки ж загальній формі не має сенсу. Його результати або лозунгово-банальні, або некоректні, так як у своїй конкретиці застосовні тільки до окремих галузей. Тому ми торкнемося лише ту частину проекту, результати якої відносяться до сфери електроніки, тобто наноелектроніку, що стоїть осібно серед всіх нанотехнологій. Принципово, що наші висновки ні в якій мірі не слід поширювати на нанотехнологію в цілому.

У своїй роботі ми спиралися на методологію історико-порівняльного аналізу. Історик науки, на думку А. Ейнштейна, нерідко здатний глибше проникнути в суть процесів, що відбуваються, ніж самі вчені – творці цих процесів [2]. Наноелектроніка народжується не на порожньому місці, це чергове ланка в столітній історії електроніки, що почалася з винаходу вакуумного тріода в 1907 році. Тому історико-порівняльний підхід правочинний і креативен. Підкреслимо, що «історичний досвід – не рецепт для лікування сьогоднішніх хвороб», дослідницькі програми повинні виходити з існуючих науково-технічних проблем, а не з історії. Неприйнятний спрощений детермінізм і редукціонізм, який намагається пояснити даний минулим і звести сьогоднішній складний до менш складного вчорашньому [3]. Але історія ставить питання, співвідносить минуле і сьогодення з тієї цільової функцією, яка константна для електроніки взагалі; «незнання історії… ставить під загрозу всяку спробу діяти в цьому» [4].

Як будь-яке нове велике суспільне явище, наноелектроніка вимагає свого філософського осмислення. Всі ми, від міністра до інженера, у повсякденній діяльності керуємося якимись апріорними установками, найчастіше інтуїтивно, не віддаючи собі в цьому звіту. Не маючи загального уявлення, легко заплутатися в деталях. Битующій нині так званий прагматизм, фетішізірующій миттєву вигоду, у великому справі найчастіше заводить у глухий кут. Від того, яку філософію сповідують суспільство і його лідери, залежить вирішення суто практичних питань розподілу фінансових, матеріальних, людських ресурсів.

Представники академічно-університетської науки (мається на увазі лише відомча приналежність відповідних інститутів) трактують виникнення нанотехнологій як науково-технічну революцію, яка змінює картину світу, або як зміну парадигми, за аналогією з переходом від класичної фізики до квантової на початку минулого століття [5]. Стосовно до наноелектроніці аргументується це тим, що мікроелектроніка розвивається еволюційно у напрямі зменшення характеристичних розмірів (зверху вниз). Нанотехнологія розвивається принципово інакше – «з рівня атомів, складаючи з них, як з кубиків, потрібні матеріали та системи з заданими властивостями» [5], тобто знизу вгору. Це положення, на жаль, увійшло і в директивний документ [1], де йдеться про «атомному та молекулярному конструюванні», як про суть нанотехнологій.

Поняття парадигми було введено стосовно історії науки у 1962 році в роботі [6], де воно розглядається як певна методологічна концепція, яку наукове співтовариство визнає істинною і сприяє прогресу. Прогрес, згідно [6], обумовлений головним чином науковими революціями, що викликаються зміною панівної парадигми, тобто затвердженням нової і запереченням попередньої, застарілою. Заклик до «зміну парадигми» – крок відповідальний, заперечення діючих концепцій завжди хворобливо, в техніці – особливо: знищуються матеріальні цінності, руйнуються людські долі. Закликати революцію всує не слід.

Безперечна зміна парадигм в електроніці відбулася лише одного разу – у зв'язку з винаходом у 1948 році транзистора і подальшим переходом від вакуумної електроніки до твердотільної. При тому колосальний прогрес, який це принесло радіоелектроніці, був закритий ряд вакуумних виробництв, зникли деякі спеціальності. Багатьом, аж до професорів, довелося переучуватися, починаючи з азів нової напівпровідникової науки.

Перехід же в 1960-ті роки до мікроелектроніці, незважаючи на гігантські зміни в усьому радіоелектроніці, в тому числі і якісні, не можна назвати зміною парадигми – фізико-технологічна концепція дискретної транзисторної електроніки поширилася на мікроелектроніку без будь-яких принципових змін. Характерно, що транзисторні заводи без потрясінь перейшли на виробництво мікросхем і в ряді випадків обійшли «чистих» мікроелектронників (приклад – мінський «Інтеграл»: цю від початку діодний завод в кінці 1970-х років виробляв близько 40% всіх вітчизняних мікросхем). У найближче десятиліття ми станемо свідками зміни парадигми в світлотехніці – світлодіоди все впевненіше витісняють лампи розжарювання, ряд скляних виробництв фірм Osram і Philips вже закритий.

Наведені приклади показують, що зміну парадигми підтверджує не грандіозність досягнень нового науково-технічного напрямку, а лише онтологічні, сутнісні відмінності нового напрямку від попереднього. Отже, чи означає виникнення і становлення наноелектроніки зміну парадигми в електроніці? Наша відповідь – немає. Наноелектроніка є логічне продовження і розвиток мікроелектроніки, а не перешагіваніе через неї і не заперечення. Це не применшення значимості наноелектроніки, а всього лише коректна характеристика ситуації.

1. Терабітна пам’ять

Полімери, організовані у відповідні наноструктури, можуть зберігати дані в обсязі терабіту на квадратний дюйм.

Самоорганізовані матеріали, відомі як блокові сополімери (block copolymers), можуть запропонувати досить ефективний і недорогий спосіб виготовлення надщільної комп'ютерної пам'яті. Блокові сополімери, які отримують з'єднанням хімічно розрізняються полімерів, можуть самостійно організовуватися в структури типу наноточок на певних поверхнях, що може бути використане для виготовлення шаблонів магнітних мікроелементів жорстких дисків (hard disks). Однак, аж до теперішнього часу, не існувало простого й швидкого способу створення структур з блокових полімерів на досить великих площах.

Дослідники з Каліфорнійського Університету в Берклі і Массачусеттського Університету в Амхерсті розробили простий спосіб нанесення блокових полімерів на підкладки площею в кілька квадратних дюймів (1 дюйм дорівнює 2,54 см). Високоорганізовані структури, сформовані блоковими полімерами, можуть бути використані для виготовлення жорстких дисків з ємністю до 10 терабіт інформації на квадратний дюйм. Результати цієї роботи опубліковані в журналі Science. (Macroscopic 10-Terabit-per-Square-Inch Arrays from Block Copolymers with Lateral Order)

Сьогоднішні жорсткі диски здатні зберігати до 200 гігабіт інформації на квадратному дюймі. Існуючі технології магнітного запису потенційно дають змогу довести щільність запису до 1 терабіта на квадратний дюйм. Кожен біт на жорсткому диску являє собою невелику ділянку магнітного матеріалу, з магнітним полем всередині цієї області, що мають одне єдине напрямок. Такі ділянки магнітного поля мають нерегулярну форму і розміри, але розташовані безперервно один поруч з одним на поверхні диска. У тому випадку, коли щільність інформації виходить за межі 1 терабіта на квадратний дюйм, ці маленькі ділянки повинні бути точно визначені і не повинні мати перехльости, оскільки в такій ситуації точність зчитування відіграє велику роль.

Блокові сополімери можуть сприяти зменшенню розмірів магнітних частинок. Коли розчин блочних кополімерів нанесений на підкладку, полімери самоорганізуються в дуже точні нанорозмірні структури. Багато виготівників жорстких дисків працюють з подібними полімерами, наприклад, Hitachi Global Storage Technologies, в Сан Хозе, Каліфорнія використовує такі комбінації полімерів, в яких один з них самоорганізується в паралельні циліндри всередині іншого полімеру. Ці циліндри, що йдуть від поверхні, можуть бути на певній фазі процесу витравлені, а поглиблення, що залишилися від них – заповнені магнітним матеріалом. Кожна мала точка цього магнітного матеріалу може нести біт інформації. На жаль, ці циліндри не організується самостійно так прямо, як це потрібно, їх структурна організація швидше випадкова по відношенню до поверхні. Тому вони не можуть бути використані саме в такому вигляді для виготовлення жорстких дисків, оскільки зчитувальний пристрій не зможе їх розпізнати.

Для того, щоб направити полімери для самосборки в структури потрібної конфігурації, дослідники спочатку використовували методи літографії, що дозволяло нанести на підкладку певну структуру, на яку і завдавали полімер. Отримання необхідного дозволу вимагало використання дорогої і час-ємної технології електронно-променевої літографії. Приміром, процес нанесення відповідної картини методами електронно-променевої літографії на площі в один квадратний дюйм часом займав близько двох місяців, як зазначає керівник робіт професор Массачусеттського Університету в Амхерсті Томас Рассел. Сьогодні ця ж завдання займає всього кілька годин.

Наномаркет.ру – нанотехнології для бізнесу.

Нова технологія, яка вирішила проблему продуктивності, полягає в наступному. Замість попереднього нанесення спеціальної структури дослідники використовують кристал сапфіру в якості підкладки. Якщо кристал зрізаний під деяким кутом та нагрітий до температури приблизно 1300 градусів Цельсія, його поверхня формується в серії гребінців пілообразной форми. Полімерні матеріали, нанесені на таку поверхню, автоматично вирівнюються і швидко застигають уздовж цих гребінців, формуючи регулярну структуру. Кожен циліндр в цій структурі має ширину близько трьох нанометрів. Якщо кожен із них може бути використаний для несення одного біта інформації, подібна структура дасть щільність запису в 10 терабіт на квадратний дюйм. Міняючи температуру нагрівання сапфірової підкладки, вчені навчилися регулювати і кут нахилу пилкоподібних гребінців і їх висоту, що, відповідно, змінює структуру полімерних циліндрів. На думку розробників, ця технологія повинна працювати і з кремнієвою підкладкою також. Тим не менш, група поки з такими підкладками не експериментувати.

Експерти з Каліфорнійського Університету (University of California) в Санта Барбара, незважаючи на те, що вважають викладений метод простим і дешевим, обрали дещо інший шлях. Вони використовують методи традиційної літографії для формування на підкладці структур шириною порядку одиниць мікрометрів, уздовж яких і вирівнюється блочний сополімер, використовуючи краї цих структур в якості направляючих.

Вчені MIT (Massachusetts Institute of Technology), що працюють у цій області досить давно (див., наприклад, http://web.mit.edu/… ly-0814.html), попереджають, що організація кополімерів в структури певної форми, це тільки перший крок у напрямку створення терабітних запам'ятовуючих пристроїв. Далі постають складні завдання виготовлення пристроїв нанорівні, зчитування і запису інформації на магнітних ділянках настільки малих розмірів. Після самосборки полімеру, яке мається на увазі виготовлення шаблону, цю структуру треба навчитися переносити на магнітний матеріал. Завдання ж практичної запису (і зчитування) інформації такої щільності дуже далекі від тривіальних.

2. Використання та застосування

2.1 Терабітна мережа

Компанія Magyar Telekom модернізувала свою IP-магістраль в рамках стратегії, спрямованої на поширення IP-послуг та широкосмугових технологій на території Угорщини. Установка маршрутизаторів Cisco CRS-1 дозволила різко збільшити ємність і надійність мережі Magyar Telekom. Цей проект став важливою віхою на шляху технологічного оновлення компанії Magyar Telekom – першого угорського оператора зв'язку, що впровадила маршрутизатори з терабітной ємністю.

«Повсюдне поширення широкосмугових інтернет-послуг – одна з головних стратегічних цілей Magyar Telekom. Ця мета повністю співпадає з національними інтересами. Ми будуємо інформаційне суспільство майбутнього, – заявив головний виконавчий директор Magyar Telekom Крістофер Маттхайзен. – Magyar Telekom виходить за рамки чисто інфокомунікаційних послуг і зміцнює свої позиції на аудіовізуальному ринку. Ми першими впровадили цілу низку новаторських послуг в галузі фіксованого та мобільного зв'язку, а також в області доставки контенту. Серед них сучасна соціальна мережа iWiW, IP-телебачення (T-Home TV), мобільна телефонія третього покоління з підтримкою відео та телевізійного мовлення, а також мобільний доступ в інтернет (web 'n' talk)».

Будівництво мережевої архітектури Cisco IP NGN створює нові можливості для модернізації телекомунікаційної інфраструктури. Ця архітектура закладає фундамент для впровадження новаторських IP-послуг, налаштованих на вимоги індивідуальних абонентів (інтегровані медіапослуг, відео та IPTV, голос поверх IP, інтерактивні ігри та доступ до цифрового контенту, у тому числі до фотобібліотекам та кінофільмів на вимогу).

2.2 «Традиційна» і «нова» наноелектроніка

Звернімося до історії. Напівпровідникова електроніка спочатку мала справу з нанорозміри, так ширина області об'ємного заряду р-n-переходу стабілітрон складає десятки нанометрів, а тунельного діода – одиниці.

У 1970–1980-ті роки в напівпровідникову техніку увійшли такі нанорозмірні структури, як гетеропереходи, сверхрешеткі, квантові ями, квантові дроту і крапки. Для їх створення були розроблені технологічні процеси, які народилися як логічний розвиток і вдосконалення напівпровідникової класики: епітаксії, дифузії, імплантації, напилювання, окислення і літографії. Набула поширення молекулярно-променевої епітаксії, іонно-плазмова обробка, іонно-променеве напилення, фотонний відпал та ін Зрозуміло, перехід до маніпулювання потоками вільних атомів, молекул, іонів привів до значних змін у класичних технологічних схемах. Зокрема, істотним стало явище самоорганізації – мимовільне освіта тих чи інших просторових структур на поверхні підкладки (зрозуміло, ця мимовільно ініціюється ззовні). Сверхпрецізіонность перерахованих технологій дозволяє відтворено отримувати ізольовані кластери, що містять сотні атомів; однорідні оптичні плівки з «шорсткістю» менше 0,2 нм; гетероструктури, що складаються з різнорідних наношарів заданого складу і т. п. Фактично ці технології – перший крок на шляху «атомного конструювання». Приладове підтвердження життєздатності перерахованого – в широко відомих досягнення новітніх мікросхем, лазерів, світлодіодів, Фотоприлад (докладніше див [7–9]). Таким чином, розвиток мікроелектроніки природно і логічно привело її до наноелектроніці, яку ми умовно назвемо традиційної наноелектроніки.

Але в 1980–1990-ті роки відбулися події і принципово іншого роду. Цей винахід скануючого тунельного мікроскопа (СТМ, 1981 р.) та атомно-силового мікроскопа (АСМ, 1986 р.), що дозволили маніпулювати нанометровим кластерами, аж до окремих атомів і молекул. У 1985 році відкриті фулерени – нова структурна форма існування вуглецю. У 1991 році на їх основі створені нанотрубки – вуглецеві пористі структури циліндричної форми, що володіють цілим рядом унікальних властивостей, аж до надпровідності. Нарешті, в 1998 році на базі нанотрубок отриманий транзисторний ефект [10]. Ці відкриття дали старт наноелектронних досліджень, що спирається на схему «знизу вгору», з її ідеологією конструювання пристроїв буквально з одиничних атомів. Зародився те, що ми умовно назвемо нової наноелектроніки. Підкреслимо її дослідний, невиробничий характер – адже техніку ВТМ і АСМ навіть з натяжкою не можна віднести до технології в загальноприйнятому розумінні (в цьому твердженні ми розходимося з авторами робіт [8, 7]). Строго кажучи, це не що інше, як техніка фізичного експерименту.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 170
Бесплатно скачать Контрольная работа: Сучасні нанотехнології