Контрольная работа: Технологии и технические средства в сельском хозяйстве
Умножив уравнение (1) на угловую скорость рабочего колеса Ω0, получим
NB = ρH - ρB + (FИ / S)) SИ( (урав.2)
где ρH - ρB + FU / S = γHT (HT - теоретический напор вихревого рабочего процесса; ρB и ρH—давление у входа в канал и выходе из него); u = Ω0Rц.т; S — площадь сечения канала.
Рис. 6. Развертка сечения канала вихревого насоса.
Напор, сообщаемый жидкости в результате вихревого рабочего процесса, равен: H =( ρH - ρB ) / γ. Если QK - расход жидкости, проходящей через канал вихревого насоса, то полезная мощность вихревого рабочего процесса равна:
NП = ( ρH - ρB )QK.)
Принимая во внимание наличие объемных потерь в уплотнениях канала ηO.K, потерь из-за утечек через уплотнение перемычки ηO, гидравлических потерь канала ηГ.К, а также потерь вихревого рабочего процесса ηР.П, получаем:
ηГ.К ηO ηO.K ηР.П = Q / uS.
Оптимальный режим вихревого рабочего процесса получается при Q ≈ 0,5 uS. При этом если ηO ηO.K ηР.П = 0,5, то максимальный полный КПД вихревого насоса η mах << 0,5. Таким образом, вихревой рабочий процесс сопровождается большими потерями энергии, что обусловливает низкий КПД вихревого насоса.
Характеристика вихревого насоса, приведенная на (рис. 7), может быть пересчитана на другую частоту вращения и другие размеры по формулам пересчета теории гидродинамического подобия.
Рис. 7. Характеристика вихревого насоса.
Большинство вихревых насосов обладает самовсасывающей способностью. Для самовсасывания насос должен быть заполнен перед пуском небольшим количеством жидкости. Достаточно даже количества жидкости, какое остается в насосе после предыдущего пуска.
Условия входа жидкости на лопатки колеса вихревого насоса открытого типа и лопастного насоса мало отличаются. Поэтому теория кавитации лопастных насосов применима и для вихревых насосов открытого типа.
У насосов закрытого типа жидкость подводится непосредственно в канал. Следовательно, на рабочее колесо она поступает на большем радиусе, при больших окружных и относительных скоростях. Поэтому кавитационные качества вихревых насосов закрытого типа очень низки. Движение на входном участке канала насоса закрытого типа сложное, так как на движение жидкости из всасывающего патрубка в канал накладывается продольный вихрь. Поэтому аналитический расчет кавитационных качеств насоса закрытого типа в настоящее время невозможен. Для улучшения кавитационных качеств насоса закрытого типа перед вихревым рабочим колесом подключают центробежную ступень. Такой насос называется центробежно-вихревым.
Режим работы вихревого насоса определяется точкой А (рис. 8) пересечения характеристики насоса (кривая 2) и характеристики сети (кривая 1). Наиболее распространенным способом изменения рабочего режима вихревого насоса является регулирование дросселированием, при котором изменение режима осуществляется изменением открытия регулировочной задвижки, установленной на напорном трубопроводе, в результате чего изменяется характеристика сети. Чтобы уменьшить подачу от QA до QB, надо прикрыть регулировочную задвижку настолько, чтобы характеристика сети прошла через точку В. При уменьшении подачи насоса дросселированием потребляемая мощность возрастает (см. характеристику насоса), поэтому регулирование вихревого насоса экономически невыгодно.
Рис. 8. Определение рабочей точки при дросселировании вихревого насоса.
Более выгодным способом регулирования подачи вихревого насоса является регулирование перепуском (рис. 9 б). Для этого напорный и всасывающий патрубки насоса соединяют свободным трубопроводом с установленным на нем регулировочным вентилем. Для уменьшения расхода в установке следует открыть вентиль, благодаря чему часть жидкости, подаваемой насосом, возвращается через отводной трубопровод обратно во всасывающий патрубок, и расход жидкости во внешней сети уменьшается.
Рис. 9. Схемы регулирования подачи вихревого насоса.
а - дросселированием; б — перепуском.
Одним из преимуществ регулирования перепуском перед регулированием дросселированием является возможность использования для привода насоса двигателя меньшей мощности. При регулировании перепуском мощность двигателя выбирают по мощности, потребляемой насосом при полностью закрытом перепуске, при дросселировании - по мощности, соответствующей нулевой подаче.
3. Устройство, принцип работы и техническое обслуживание стационарных и передвижных автопоилок для КРС
Для поения животных применяются как стационарные, так и передвижные групповые и индивидуальные автопоилки. Они различны по устройству, но в зимнее время без подогрева не работают, их конструкция и размеры зависят от вида животных. Индивидуальная автопоилка для крупного рогатого скота (рис. 10) состоит из корпуса, поильной чаши 4, клапана 2, нажимной педали 3. При нажатии на педаль движение передается на клапан, и он открывает отверстие, через которое вода течет в поильную чашу. Такие поилки ставить каждому животному вряд _ ли целесообразно. Представляется, что учащимся стоит подумать о создании более простой и технически надежной, отвечающей зоотехническим требованиям системы для поения скота в любое время суток и года. Клапан 2 может закрываться резиновым амортизатором 5 или металлической пружиной.
Рис. 10. Индивидуальная автопоилка.
Для поения животных в коровниках с привязным содержанием и телятниках, где содержат телят после профилактического периода, устанавливают индивидуальные автопоилки отечественного производства типа ПА-1А. В помещениях для телят индивидуальные поилки устанавливают одну на групповую клетку. Если групповая клетка большая, то поилки устанавливают из расчета 1 штука на 6-10 телят. На молочных фермах с беспривязным содержанием используют групповые поилки с электроподогревом воды АГК-4Б.