Контрольная работа: Технология сохранения пищевых продуктов
Циркуляцию воды осуществляют насосом через фильтры, обезвреживающие устройства, охладители или нагреватели. Отработанную воду сменяют по мере ее загрязнения.
Для размораживания в воде погружным способом в помещении устанавливают резервуары, к которым подводят трубопроводы с охлаждаемой или подогреваемой водой. Продукты погружают в резервуар в сетчатых корзинах или при помощи конвейера.
В кулинарной практике размораживание производят одновременно с тепловой обработкой, например, варкой в воде или на пару, с жарением на сковороде, в кипящем масле для использования полностью подготовленных замороженных вторых блюд, мясных и рыбных полуфабрикатов, овощных смесей для супов и гарниров. Потери питательных веществ в данном случае исключаются, а продолжительность размораживания минимальная.
Продолжительность размораживания зависит от температуры внешней среды, теплоотдачи от источника тепла к продукту, размеров и форм продукта, его физических и тепловых характеристик. Методы расчета продолжительности размораживания строятся на эмпирическом материале или на значительных упрощениях представлений о протекании теплообмена при подводе тепла к замороженному продукту.
2. Применение холода при получении соков
замораживание хранение продукты сок
Практически нет сферы деятельности человека, где бы ни использовался холод. Особенно широко применяется при производстве и хранении продуктов питания.
Для осуществления процесса охлаждения необходимо иметь два тела: охлаждаемое и охлаждающее. В данном случае охлаждающее тело является источником низкой температуры. Охлаждение будет проходить, пока между телами происходит теплообмен. Источник низкой температуры должен функционировать постоянно, так как охлаждение должно осуществляться непрерывно. Это возможно при достаточно большом запасе охлаждающего вещества или при его конечном количестве, если восстанавливать первоначальное состояние вещества. Последний метод непрерывного получения низкой температуры широко применяется в холодильной технике с использованием различных холодильных машин.
Сок — напиток, популярный практически во всех странах мира. Наиболее распространены соки, выжатые из съедобных плодов растений (фруктов, овощей, ягод). Однако существуют соки, полученные из стеблей, корней, листьев различных, употребляемых в пищу трав (например, сок из стеблей сельдерея, сок из стеблей сахарного тростника).
С точки зрения потребителей, соки традиционно делят на два вида:
1. Свежевыжатый сок. Сок, который производят в присутствии потребителей с помощью ручной или механической обработки плодов или других частей растений.
2. 100%-ый восстановленный сок. Сок, произведенный из концентрированного сока (или пюре), который поступает в продажу в асептической упаковке.
В зависимости от того, из какого сырья их готовят соки бывают фруктовые или овощные, или фруктово-овощные или овощефруктовые.
Сок из одного вида плодов имеет название моносок или ординарный сок.
Сок, изготовленный из нескольких видов плодов, называют купажированным или смешанным.
В зависимости от технологии приготовления соки бывают прямого отжима и восстановленные.
Согласно российскому законодательству под соком следует понимать «жидкий пищевой продукт, который несброжен, способен к брожению, получен из съедобных частей доброкачественных, спелых, свежих или сохраненных свежими либо высушенных фруктов и (или) овощей путем физического воздействия на эти съедобные части и в котором в соответствии с особенностями способа его получения сохранены характерные для сока из одноименных фруктов или овощей пищевая ценность, физико-химические и органолептические свойства»[3] .
В производстве соков использование холода является немаловажным. Известно, что в пищевых продуктах количество бактерий наиболее интенсивно растет в диапазоне температур от +25 до 450 С и сокращается до минимальной величины при температуре ниже +10-150 С. Поэтому важно сразу же после термообработки продукта обеспечить его охлаждение, причем опасный с точки зрения роста количества бактерий температурный интервал должен быть пройден с максимальной скоростью.
Сохраняя все вкусовые качества и полезные свойства свежих продуктов например, сока, концентрирование вымораживанием удаляет из них воду. Изолированная система, заполненная жидким продуктом, работает при низких (отрицательных) температурах, полностью сохраняя качество исходного продукта. Аромат (включая многогранные ароматы, характерные для свежевыжатых соков), цвет, вкус, привкус и букет не изменяются. Это дает возможность восстановления из такого концентрата продукта, полностью идентичного свежему оригинальному продукту.
Концентрирование вымораживанием осуществляется в пищевой промышленности уже более 30 лет. Доказанная технология демонстрирует большие преимущества. Существенным является тот факт, что низкая рабочая температура особенно благоприятна для образования концентратов из продуктов, чувствительных к нагреванию.
Технология производства натурального сока, путем восстановления замороженного концентрированного сока, является наиболее эффективной, хотя и достаточно дорогой. Она позволяет сохранить все полезные вещества, содержащиеся в свежих фруктах. Получившийся в результате вымораживания концентрированный сок обрабатывают, а затем смешивают с сахаром. Перед окончанием процесса изготовления сока в него добавляется вода, затем он фильтруется.
Концентрат получают двумя различными способами - выпариванием или вымораживанием воды.
Никакая другая технология концентрирования не в состоянии произвести продукт, способный конкурировать по показателям качества с продуктом, полученным концентрированием вымораживанием.
Концентрирование вымораживанием состоит из двух основных этапов: кристализация и сепарирование. На первом этапе часть находящейся в соке воды под действием низких температур превращается в кристаллы льда, на втором - концентрированный раствор сока и лед, которые имеют разную плотность, разделяются под действием внешнего давления или центробежных сил.
Технологическая установка кристаллизации состоит из двухосновных узлов (циклов). Узел кристаллизации включает в себяскребковый кристаллизатор и резервуар роста. Образовавшиесякристаллы соскребаются со стенкристаллизатора и поступают в камеру роста, обеспечивающуюнеобходимое время пребываниядля увеличения кристаллов в размерах. После того,как кристаллы достигнут требуемых размеров в узле кристаллизации, они направляются в узел разделения, где отделяются от концентрата в промывной колоннепоршневого типа.
Процесс начинается с введенияновой порции исходного продукта врезервуар роста. Там продукт смешивается с суспензией кристаллов,которая непрерывно циркулируетмежду резервуаром роста и кристаллизатором. Созревшая кристаллическая взвесь направляетсяв промывную колонну, где при помощи поршня разделяется насконцентрированную жидкость икристаллы льда. Сконцентрированная жидкость выводится изоснования промывной колонны, апромытые ледяные кристаллыудаляются из верхней части колонны. Ледяные кристаллы расплавляются в контуре плавления и вы-водятся из установки в виде чистойводы.Промышленные установки концентрирования сока обычно достигают 40-42° по Бриксу. Лимитирующим фактором является вязкость при температуре замерзания концентрата. Предпочтительно, чтобы ее показатели непревышали 40 сПз.
Вымораживанием могут быть сконцентрированы как осветленные, так и неосветленные соки. При обработке неосветленных соков исходный продукт может содержать немного мякоти (например, до 3% объема мякоти в апельсиновом соке).
Благодаря тому, что конструкция установки не предполагает контакта продукта с окружающей средой и имеет оптимальный эксплуатационный режим, дополнительная промежуточная очистка не требуется и система работает непрерывно. Установка останавливается только для смены
Отметим, что например, приготавливаемый в домашних и производственных условиях виноградный сок является насыщенным раствором винного камня, который необходимо удалить из сока. В производственных условиях кристаллизация винного камня производится путем выдержки виноградного сока в течение трех-четырех месяцев в 10-литровых стеклянных баллонах при температуре 0–3 0 С.