Контрольная работа: Технология теории решения изобретательных задач (ТРИЗ)

Собственно таблица содержит только фрагмент системы, и может быть продолжена в любую сторону путем изменения степеней m и n у Lm и Tn. В этой таблице представлены размерности физических величин в базисе длины L [м] и времени T[c]. Например, сила имеет размерность L4T-4 [м4/с4], давление - L2T-4 [м2/с4], энергия и статистическая температура – L5T-4 [м5/с4] и т.д. Числа m и n - любые целые, и для реального трехмерного пространства |m+n|3.

О возможности создания системы единиц измерений на базе только длины и времени писал Максвелл еще в 1873 году. Он же определил и размерность массы, приравняв силу инерции, равную произведению массы на ускорение, силе гравитации двух равных масс, равной квадрату массы, деленному на квадрат расстояния между тяготеющими массами (сплошной Ньютон!).

Важность LT-таблицы заключается в том, что она выражает физические законы сохранения. Например, приравнивая размерность ячейки L1T0 константе, получаем закон сохранения длины твердого тела: L=Const. Равенство L+5T-4 = Const дает закон сохранения энергии. Равенство L+2T-4=Const отражает закон Гука. Равенство L+3T-2=Const является записью закона Кеплера (отношение куба планетарного радиуса к квадрату периода вращения есть величина постоянная).

Таблицу Бартини приводит в своей книге и Б.А.Лабковский, где отмечает очень важное и полезное свойство: каждая ячейка таблицы или соответствующий закон сохранения определяет объем объектов, объединенных в класс. Действительно, многие клетки содержат не одну физическую величину, а несколько. Например, в ячейке L+3T-2 размещены две физические величины: масса и количество электричества, в ячейке L+1T0 размещены три величины: длина, емкость, самоиндукция и т.д. Более того, во многие ячейки можно дописать не указанные в таблице физические величины. Например, в системе СИ теплопроводность измеряется в [Вт/м·K]. Если вместо ватта поставить размерность мощности L+5T-5, а вместо кельвина - размерность температуры L+5T-4, то теплопроводность необходимо добавить в ячейку L-1T-1.

Текучесть расплава измеряется в [кг/с]. Подставляя вместо килограмма размерность силы L+4T-4, получаем размерность текучести расплава L+4T-5. Как видно, в исходной таблице эта величина также не приведена. Правда, если в размерности [кг/с] приведена не килограмм-сила, а килограмм-масса, тогда получим L+3T-3 (сила это или масса - должны уточнить металлурги или химики, у них тоже есть понятие текучести расплава полимеров).

Сила классификации в том, что каждый класс содержит так называемый "инвариант" - свойство, которое присуще всем элементам этого класса. П.Г. Кузнецов называет это свойство сущностью.

- В чем инвариантность или сущность длины, емкости, самоиндукции для нас, в наших изобретательских задачах?-

- В том, что все они имеют одну и ту же физическую размерность L+1T0. -

Поэтому, когда в изобретательской задаче встречаются свойства длины, емкости или самоиндукции, то с этими свойствами можно оперировать одинаковыми приемами, тем самым сокращается "проклятие размерности". Тоже самое касается и так называемых "критериев подобия", когда законы сохранения в разных отделах физики имеют одну и ту же математическую структуру. Например, если в механике в какую-нибудь формулу длина входит в квадрате, то в подобной формуле для электричества емкость тоже будет в квадратной степени.

С другой стороны, Б.А. Лабковский таблицу Бартини критикует практически за то, за что одобряет, а именно, за абстрактность, за сильную свернутость (получается, что за снижение "проклятия размерности"). Действительно, если в результате решения задачи по АРИЗу получилось, что икс-элементом является вода, то по таблице Бартини Вы этого не найдете. Нет там воды! Там только величины, которые могут быть измерены; например, расход объема [м3/с] или L+3T-1, в данном случае - абстрактная величина, поскольку этой величиной измеряется не только расход воды, но и другой жидкости, и газа, и сыпучих веществ. А в какой-нибудь другой задаче, связанной, например, с законом Архимеда, плавучестью, вода, как ответ, может быть опознана через свое, другое для этой задачи свойство, - удельный вес (физическая размерность L+1T-4) и т.д.

Но, пожалуй, главным недостатком таблицы Бартини Б.А.Лабковский считает отсутствие связи между инвариантами, т.е. отдельными клетками таблицы. Поэтому он не видит возможностей практического использования этой таблицы в изобретательстве. Во всяком случае, в главе 7 "Изобретательство и физика" [9] он уходит от хорошо свернутой таблицы Бартини и строит свою таблицу физических эффектов и сокрушается, что последняя опять выходит "на проклятие размерности".

Б.А.Лабковского можно понять. Действительно, что общего, например, между ячейкой L+2T-4 (давление) и, скажем, ячейкой L0T-1 (частота)?

Давайте разберемся, и помогут нам в этом тренды ресурсов.

Тренды ресурсов

Продолжим разбор задачи о запайке ампул. Мы остановились на том, что линия "изделие (L1) –> инструмент (L2) –> икс-элемент(L3) –> решение (L4)" для этой задачи аналогична тренду "точка-линия-поверхность-объем". Найдем этот тренд в LT-таблице. Очевидно, он находится в строке T0, где геометрическая размерность точки есть безразмерная величина L0, размерность линии - длина L1 и т.д. Каждый, кто хоть немного знает интегральное исчисление, скажет, что интеграл от дифференциала dl (точка) есть l (длина), а интеграл от ldl есть l2=S (поверхность) и т.д. (естественно, с точностью до безразмерных коэффициентов, которые мы уже договорились не учитывать).

Таким образом, по мере продвижения по тренду T0 от клетки к клетке слева направо геометрическая мерность пространства увеличивается на единицу путем умножения предыдущей мерности на L+1: Ln+1T0=LnT0 ·L+1. Можно утверждать, что размерности свойств всех элементов тренда имеют в своем составе множитель L+1, который передается по наследству от свойства к свойству, и который может быть назван геном длины. Ген длины передает всем элементам (поколениям) тренда физическое свойство: быть совокупностью (ансамблем) линий. Действительно, линия - это совокупность линий(из одной линии), поверхность - это совокупность линий, объем - это тоже совокупность линий и т.д.

Но тренд T0 в таблице неограничен как слева, так и справа, и может начинаться с любой клетки. Если он начинается с безразмерной величины L0T0, тогда все последующие поколения будут обладать свойством "быть совокупностью точек".

Выясним, как же физически или геометрически передается наследственное свойство.

Представим наше изделие, т.е. ампулу, стоящую вертикально (в деревянной кассете) и характеризуемую свойством высоты, измеряемым единицами длины. Допустим, что в начале никакого изделия и, тем более, его свойства высоты, нет. Тогда наша ампула вырождается в безразмерную точку, расположенную, например, на дне кассеты. Это будет начало отсчета. Возьмем другую точку, например, бусинку (нулевого радиуса) или пятнышко, кружок нулевой толщины (строго говоря, dl) и нулевого радиуса, и наложим его (или ee - бусинку) на первую точку, затем положим третью точку и т.д. Можно даже эти точки-кружки-бусинки накалывать на вертикальную ось как на спицу.

Наконец, накололи на спицу столько точек, что добрались до верхней точки ампулы. Получили прямую вертикальную линию нулевой толщины, но определенной длины. Именно эта линия и обладает абстрактным свойством высоты. Можно также сказать, что линия есть некоторое распределение точек вдоль высоты ампулы, и записать логическую формулу: линия = "И" точка "И" точка "И" точка...."И" точка... Формула эта выражает математическую операцию логического умножения "И"-"И" или соединения, сложения элементов в некоторую совокупность.

Вот где в первый раз проявился метод "И"-"И" Бартини - в геометрии. Недаром статья [7], где также напечатана LT-таблица, называется "Множественность геометрий и множественность физик".

Важно отметить, что свойство линии - ее высота, выражаемая в единицах длины, появляется уже при двух точках, расположенных в любых местах этой линии, например, в начале отсчета и на конце капилляра. Тогда минимальная логическая формула для линии будет такая: линия = "И" точка "И" точка.

Аналогично поступаем дальше и определяем свойство инструмента y, которое определено как поверхность пламени, контактирующая с ампулой. Так как свойство линии, измеряемое длиной, уже выяснено, то берем эту самую линию и сворачиваем ее в кольцо вполне определенного диаметра, равного диаметру ампулы и пропорционального длине с некоторым безразмерным коэффициентом. Толщину кольца выбираем, естественно, нулевой (строго, dl) - вот оно, наследственное свойство точки!

Далее такие кольца начинаем накалывать на нашу спицу, формируя из них, поверхность контакта. В районе капилляра кольца, конечно, должны быть существенно меньшего радиуса.

Ясно, что поверхность (совокупность колец) или свойство инструмента есть определенное распределение линий вдоль (ген L+1 !) высоты ампулы. Минимальная логическая формула поверхности: S = "И" линия "И" линия.

Теперь будем формировать объем или свойство y икс-элемента путем наращивания на dl того измерения, которое на предыдущей итерации было нулевым. Нулевой толщиной стенок обладает цилиндрическая поверхность, образующая из колец поверхность контакта или оперативную зону в терминологии АРИЗ. Наращиваем толщину стенок поверхности, появляется распухающий цилиндр, который и образует объем - свойство икс-элемента. В данном случае объем является определенным распределением поверхностей вдоль другого направления, перпендикулярного высоте. Иначе и объем не образовать. Но, с другой стороны, объем распределен определенным образом и по высоте ампулы: в районе лекарства - это толстый цилиндр, в районе капилляра - тонкий, да еще есть переход от толстого к тонкому. Минимальная логика объема: V = "И" поверхность "И" поверхность.

Наконец, последняя итерация - образование геометрического образа решения. Мысленно берем кубики объема (или то объемное, за что можно ухватить), и начинаем накалывать на вертикальную спицу. Получаем, что решение в пространстве, есть, по крайней мере, определенное распределение объема по высоте ампулы, т.е. по изделию. Мы-то не знаем пока, что этот объем должна занимать вода, но геометрия подсказывает, что "вода" по высоте ампулы может быть распределена по-разному. Например, снизу много - "толстый" объем, сверху мало - "тонкий" объем. Получается то же самое, когда две точки уже дают линию, а две линии -поверхность, так и два объема ("И" толстый, "И" тонкий или "И" длинный, "И" короткий (в пределе - нулевой длины)), размещенные вдоль изделия, дают минимальный геометрический образ решения.

Пространственный анализ задачи по таблице Бартини в некотором смысле аналогичен шагу 2.1 АРИЗа. Там тоже определяются ресурсы пространства, в котором находится конфликт, и куда надо вводить икс-элемент.

В чем отличие? В АРИЗе икс-элемент надо помещать в оперативную зону, т.е. в данном решении - на поверхность ампулы. Не сразу доходит до сознания, что это может быть вода: как же она удержится на поверхности? Конечно, потом дойдет (да если еще и преподаватель пояснит!), что если наливать воду, и она будет скатываться вниз по ампуле, то необходимо ампулу поставить в какой-то объем, чтобы вода не утекала. Здесь же, по Бартини, получается сразу, что икс-элемент должен иметь объем.

К-во Просмотров: 293
Бесплатно скачать Контрольная работа: Технология теории решения изобретательных задач (ТРИЗ)