Контрольная работа: Термодинамический расчет газового цикла
Таблица 1
Параметры состояния идеального газа в характерных точках цикла
Параметр Характерная точка |
, МПа |
, м3 /кг |
, К | Примечание |
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 |
3.3. Определение массовых изобарной и изохорной теплоёмкостей.
Массовые изобарная и изохорная теплоёмкости (кДж/(кг·К)) определяется по формуле:
где – мольные изобарная и изохорная теплоёмкости, кДж/(кмоль ·К).
Таблица 2
Приближенные значения мольных теплоемкостей при постоянном объеме и постоянном давлении () []
Газы | , кДж/(кмоль ·К) | , кДж/(кмоль ·К) |
Одноатомные | 12,56 | 20,93 |
Двухатомные | 20,93 | 29,31 |
Трехатомные | 29,31 | 37,68 |
3.4. Процессы газового цикла.
Рассматриваемые процессы газа равновесные, т. е. состоят из равновесных промежуточных состояний, которые характеризуются одинаковым давлением, удельным объемом и температурой. Расчет процессов газового цикла начинается с процесса (1-2).
Уравнение первого закона термодинамики дает возможность исследовать явления, происходящие с газами при изменении его состояния.
В общем виде первый закон термодинамики представляет собой математическое выражение закона сохранения и превращения энергии. Его можно представить в таком виде :
,
т.е. подведенное к газу тепло расходуется на изменение внутренней энергии газа и на совершение работы.
Изменение энтальпии для термодинамических процессов определяется по формуле
Превращение работы в теплоту происходит всегда полностью, обратный же процесс превращения теплоты в работу при непрерывном переходе возможен лишь при определенных условиях. Второй закон термодинамики устанавливает условия преобразования тепловой энергии в механическую, определяет направление, в котором протекают процессы, а также максимальное значение работы, которая может быть произведена тепловым двигателем.
Для изучения процессов превращения тепла в работу в тепловых двигателях используют параметр состояния газа – энтропию газа.
В данной работе рассматривается прямой обратимый цикл. Второй закон термодинамики для обратимого процесса имеет вид :
Для вычисления изменения энтропии для термодинамических процессов (кроме адиабатного) используют логарифмические зависимости. В адиабатном процессе изменения состояния газа, в котором , энтропия не изменяется.
Если в прямом цикле в процессе расширения к газу подводится тепло в количестве , а в процессе сжатия от газа тепло отводится в количестве , то разность как теплота исчезает в течение цикла в результате преобразования её в механическую энергию. Так как газ возвращается в первоначальное состояние, изменение внутренней энергии нет , т.е. в соответствии с первым законом термодинамики:
,