Контрольная работа: Точные методы численного решения систем линейных алгебраических уравнений
end;
writeln;
writeln('Ответ X:');
writeln;
for i:=1 to n do
writeln('x[',i,']= ',x[i]:1:4);
writeln;
end;
{Основная программа}
var a,a1,c,b:mattype;
d:mattype1;
n:byte;
begin
clrscr;
writeln ('Курсовая работа ');
InputMat(a,d,n); {Ввод матрицы A }
getBnC(a,b,c,n);{ Получение треугольных матриц B u C}
Writeln('Матрица B: ');
writemat(b,n,n);
readln;
Writeln('Матрица C: ');
writemat(c,n,n);
otvet(b,c,d,n);
readln;
end.
3.2 Решение в Excel
Заключение
Первым из алгоритмов, посвященным большому разделу решения систем линейных уравнений, представляем алгоритм Халейкого. Это фактически метод решения систем общего вида, конкурирующий по быстродействию с общеизвестным методом Гаусса-Жордана, но позволяющий более эффективно использовать решение.
Если мы можем разложить матрицу линейной системы A в произведение A=L*U(B*C), где L(B) - нижняя, а U(C) - верхняя треугольные матрицы, то решение системы уравнений с произвольной правой частью производится весьма просто, применением двух обратных подстановок. Более того, в отличие от известного метода Гаусса-Жордана, разложенная матрица позволяет быстро решать серии линейных уравнений с различными правыми частями при одной и той же матрице.