Контрольная работа: Цитология и строение клетки

При возбуждении люминесценции синим светом цвет ее может быть от зеленого до красного, если люминесценция возбуждается ультрафиолетовым излучением, то свечение может быть в любой части видимого спектра.

Эта особенность люминесценции позволяет, используя специальные светофильтры, поглощающие возбуждающий свет, наблюдать сравнительно слабое люминесцентное свечение.

Устройство флуоресцентного микроскопа и правила работы с ним отличаются от обычного светового микроскопа в основном следующим:

1. Наличие мощного источника света в осветителе, излучающего преимущественно в коротковолновой (ультрафиолетовой, синей) части спектра (ртутно-кварцевая лампа или галогенная кварцевая лампа).

2. Наличие системы светофильтров:

· возбуждающие светофильтры пропускают только ту часть спектра, которая возбуждает люминесценцию;

· теплозащитный светофильтр защищает от перегрева другие светофильтры, препарат и оптику флуоресцентного микроскопа;

· "запирающие" светофильтры расположены между окуляром. Эти светофильтры поглощают возбуждающее излучение и пропускают свет люминесценции от препарата к глазу наблюдателя.

Способ освещения препаратов для возбуждения люминесценции заключается в том, что препарат освещают светом, падающим на него через объектив. Благодаря этому освещенность увеличивается при использовании объектов, имеющих большую числовую апертуру, т. е. тех, которые используются для изучения микроорганизмов.

Важную роль при этом способе освещения играет специальная интерференционная светоделительная пластинка, направляющая свет в объектив. Она представляет собой полупрозрачное зеркало, которое избирательно отражает и направляет в объектив часть спектра, которая возбуждает люминесценцию, а пропускает в окуляр свет люминесценции.

Оптика объективов флуоресцентного микроскопа изготавливается из нелюминесцирующих сортов оптического стекла и склеивается специальным нелюминесцирующим клеем. При работе с объективами масляной иммерсии используется нелюминесцирующее иммерсионное масло.

Поскольку большинство микроорганизмов не обладают собственной люминесценцией существует несколько способов их обработки для наблюдения в флуоресцентном микроскопе. Прежде всего, это флуорохромирование - окрашивание сильно разведенными (до нескольких микрограмм/мл) растворами флуоресцирующих красителей (флуорохромов). Флуоресцентная микроскопия по сравнению с обычной позволяет:

- сочетать цветное изображение и контрастность объектов;

- изучать морфологию живых и мертвых клеток микроорганизмов в питательных средах и тканях животных и растений;

- исследовать клеточные микроструктуры, избирательно поглощающие различные флуорохромы, являющиеся при этом специфическими цитохимическими индикаторами;

- определять функционально-морфологические изменения клеток;

- использовать флуорохромы при иммунологических реакциях и подсчете бактерий в образцах с невысоким их содержанием.

Флюоресцентная (люминесцентная) микроскопия позволяет изучать как собственную (первичную) флюоресценцию ряда веществ, так и вторичную флюоресценцию, вызванную окрашиванием клеточных структур специальными красителями — флюорохромами.

Принцип метода состоит в том, что некоторые вещества при световом облучении начинают светиться сами. Для возбуждения флюоресценции в видимой части спектра обычно пользуются синим светом или ультрафиолетовыми лучами.

Многие вещества, не флюоресцирующие в видимой области (в особенности нуклеиновые кислоты), при освещении ультрафиолетовыми лучами начинают флюоресцировать и могут выявляться без применения флюорохромов.

К вторичной флюоресценции относится иммунофлюоресценция, основанная на взаимодействии иммунного белка с флюорохромами.

Ультрафиолетовая микроскопия

Ультрафиолетовая микроскопия, основанная на способности некоторых веществ избирательно поглощать ультрафиолетовые лучи с определенной длиной волны, принципиально почти ничем не отличается от обычной световой микроскопии и осуществляется при помощи микроскопов с кварцевой или отражательной (зеркальной) оптикой. Изображение рассматривается на флюоресцирующем экране визуально, а также фотографируется.

Микроскопирование объектов позволяет выявить исследуемые вещества, не применяя окрашивания.

Поскольку крайний предел разрешения, достижимый с наилучшей линзой, равен половине длины волны применяемого света, единственным возможным путем увеличения разрешения может быть использование света более коротких длин волн, чем видимый.

Таким светом является ультрафиолетовое излучение. Длина волны зеленого света составляет 5000 А. Из соображений, обусловленных источниками света и используемыми для линз материалами, самый коротковолновый реально применимый на практике ультрафиолетовый свет — это мощное излучение ртутной дуги, длина волны которого очень близка к 2500

А, т. е. как раз к половине длины волны зеленого света. В самом лучшем случае использование этого ультрафиолетового света может только удвоить разрешающую способность; достижение не такое уж значительное, тем не менее достаточно желательное.

Однако существует иное и, может быть, большее основание пользоваться ультрафиолетовым светом в микроскопии, оеобенно в применении к биологическим объектам.

Было найдено, что различные участки образца могут (на самом деле это совсемно редкий случай) поглощать ультрафиолетовый свет по-разному. Вследствие этого прохождение света через объект может выявить совершенно новые контрасты и обнаружить области различной структуры при условии, что существует какое-нибудь устройство, позволяющее наблюдателю «увидеть» ультрафиолетовое изображение.

К-во Просмотров: 254
Бесплатно скачать Контрольная работа: Цитология и строение клетки