Контрольная работа: Уравнения регрессии

Далее находим F-критерий Фишера

.

Для первого уравнения Fфакт.=18,906>Fтабл.=3,44, что подтверждает статистическую значимость уравнения. Для второго уравнения Fфакт.=30,360>Fтабл.=4,28, что подтверждает статистическую значимость уравнения. Для третьего уравнения Fфакт.=6,472>Fтабл.=4,28, что подтверждает его статистическую значимость. Итак, F-критерий Фишера подтверждает значимость всех трех уравнений с вероятностью 95%.

Для оценки значимости коэффициентов регрессии первого уравнения вычисляем t-критерий Стьюдента

,

где частный F-критерий

.


Получаем , . Отсюда , . Для α=0,05 . Следовательно, коэффициент регрессии b₁ является статистически значимым, а коэффициент b₂ таковым не является.

Показатели частной корелляции для первого уравнения вычисляются по формуле

.

Получаем , .

Средние коэффициенты эластичности для линейной регрессии рассчитываются по формуле

.

Для первого уравнения получаем , , для второго уравнения , для третьего уравнения .

Задание 3

Исходная система уравнений

содержит эндогенные четыре переменные и две предопределенные .

В соответствии с необходимым условием идентификации D+1=H первое и второе уравнения сверхидентифицируемы (H=2, D=2), третье уравнение идентифицируемо (H=1, D=0), четвертое уравнение является тождеством и в проверке не нуждается.

Для первого уравнения

, Det A*≠0, rk A=3.

Для второго уравнения

, Det A*≠0, rk A=3.

Для третьего уравнения

, Det A*≠0, rk A=3.

Четвертое уравнение является тождеством и в проверке не нуждается.

Достаточное условие идентификации выполняется для всех уравнений.

Для оценки параметров данной модели применяется двухшаговый МНК.

Приведенная форма модели

К-во Просмотров: 210
Бесплатно скачать Контрольная работа: Уравнения регрессии