Контрольная работа: Вариационные ряды

Итак, воспользуемся данными таблицы 1 и 2 для расчета критерия "хи-квадрат", предварительно округлив теоретические частоты в графе 8 табл.2, а также объединив частоты двух последних интервалов, выполняя требование f’j ³ 5.

Таблица 4.

Номер интервала Эмпирические частоты Теоретические частоты
1 2 6 16 2,67
2 12 14 4 0,29
3 30 27 9 0,33
4 40 38 4 0,1
5 47 38 81 2,13
6 32 30 4 0,13
7 16 25 81 3,24
Итого 182 178 8,89

X2 расч = 8,89

Таким образом, проведенный расчет дает право не отвергать гипотезу о нормальном характере эмпирического распределения.

Произведем интервальную оценку выборочного среднего значения с доверительной вероятностью 0,98.

На основе имеющейся выборки получим точечную оценку математического ожидания в виде выборочной средней:

Среднеквадратичное отклонение составляет: . Уровень надежности . Определяем значение функции Лапласса:

По таблице значений функции находим соответствующее значение z . В данном случае . Тогда .

Доверительный интервал] 95,6868 - 0,164, 95,6868 + 0,164 [=

=] 95,5228, 95,8508 [.

Следовательно, 95,5228 < Mx < 95,8508 с вероятностью 0,98.

Задание № 4.

По заданной выборке (x,y) найти коэффициент корреляции и уравнения линейной регрессии y=a+b*x, №=45


Таблица 5

x…... y x…... y x…... y x…... y x…... y x…... y x…... y x…... y x…... y x…... y x…... y
23 -115 18 -90 10 -48 19 -91 18 -84 9 -44 12 -55 24 -115 6 -26 22 -107 18 -84
18 -83 11 -54 15 -71 13 -64 8 -51 14 -64 22 -109 8 -38 14 -64 22 -106 9 -43
16 -74 17 -85 15 -71 13 -60 11 -37 24 -118 18 -87 6 -28 7 -31 22 -109 13 -64
8 -35 8 -35 12 -56 12 -54 14 -67 14 -68 21 -102 10 -46 16 -79 17 -80 18 -87
22 -105

Решение:

На основании исходных данных найдем суммы и средние значения x и y :

Вычислим параметр парной линейной корреляции:

Свободный член уравнение регрессии вычислим по формуле:

, откуда

Уравнение регрессии в целом имеет вид:

Коэффициент корреляции, рассчитанный на основе полученных данных:

К-во Просмотров: 252
Бесплатно скачать Контрольная работа: Вариационные ряды