Контрольная работа: Ветеринарная радиобиология

1 Происхождение ядерных излучений

2 Основы радиационной безопасности, методы и средства защиты при работе с радиоактивными веществами

3 Патологоанатомические изменения при лучевой болезни

Список использованной литературы


1 Происхождение ядерных излучений

Проникающая радиация (ионизирующие излучения) представляет большую опасность для здоровья и жизни людей и животных. В больших дозах она вызывает серьезные поражения тканей организма, а в малых – онкологические заболевания, провоцирует генетические дефекты.

В природе существует некоторое количество химических элементов, ядра атомов которых самопроизвольно превращаются в ядра других элементов. Эти превращения сопровождаются излучением, которое назвали ионизирующим излучением, а само явление распада ядер – радиоактивностью.

Ионизирующие излучения представляют собой потоки элементарных частиц и квантов электромагнитного излучения, способных вызывать ионизацию атомов и молекул среды, в которой они распространяются.

Радиоактивное излучение невидимо. Оно обнаруживается с помощью различных явлений, происходящих при его действии на вещество (свечение люминофоров или флуоресцирующих экранов, ионизация вещества, почернение фотоэмульсии после проявления и т. п.)

К ионизирующим излучениям относятся:

альфа-излучение (α-излучение) – представляют собой ядра атомов гелия и состоят из двух протонов и двух нейтронов; они имеют двойной положительный заряд и относительно большую массу, равную 4,003 а.е.м. α-частицы превышают массу электрона в 7300 раз; энергия их колеблется в пределах 2-11 МэВ. Для каждого данного изотопа энергия α-частиц постоянна. В спектре альфа-излучения очень незначительный процент короткопробежных и длиннопробежных частиц, поэтому альфа-излучение считают монохроматическим. Пробег альфа-частиц в воздухе составляет в зависимости от энергии 2-10 см, в биологических тканях – несколько десятков микрон. Так как альфа-частицы массивны и обладают сравнительно большой энергией, путь их в веществе прямолинеен; они вызывают сильно выраженные эффекты ионизации и флуоресценции. В воздухе на 1 см пути α-частица образует 100-250 тыс. пар ионов. Поэтому альфа-излучатели при попадании в организм крайне опасны для человека и животных. Вся энергия α-частиц передается клеткам организма, что наносит им вред;

бета-излучение (β-излучение) – представляет поток частиц (электроны и позитроны), испускаемых ядрами при бета-распаде. β-частицы одного и того же радиоактивного элемента обладают различным запасом энергии. Это объясняется тем, что при бета-распаде из атомного ядра вылетают одновременно с β-частицей нейтрино. Энергия, освобождаемая при каждом акте распада, распределяется между β-частицей и нейтрино. Если β-частица вылетает из ядра с большим запасом энергии, то нейтрино испускается с малым уровнем энергии и наоборот. Поэтому энергетический спектр бета-излучения сплошной или непрерывный. Средняя энергия β-частиц в спектре равна примерно 1/3 их максимальной энергии. Поскольку β-частицы одного и того же радиоактивного элемента имеют различный запас энергии, то величина их пробега в одной и той же среде будет неодинаковой. Путь β-частиц в веществе извилист, так как, обладая крайне малой массой, они легко изменяют направление движения под действием электрических полей встречных атомов. Бета-излучение образует 50-100 пар ионов на 1 см пути в воздухе и имеет «рассеянный тип ионизации». Пробег β-частиц в воздухе может составлять в зависимости от энергии до 25 м, в биологических тканях – до 1 см. Скорость движения β-частиц в вакууме равна 1∙1010 -2,9∙1010 см/с (0,3-0,99 скорости света). Различные радиоактивные изотопы значительно отличаются друг от друга по уровню энергии бета-частиц. Максимальная энергия бета-частиц различных элементов имеет широкие пределы от 0,015-0,05 МэВ (мягкое бета-излучение) до 3-12 МэВ (жесткое бета-излучение);

гамма-излучение (γ-излучение) – представляет собой поток электромагнитных волн; это, как и радиоволны, видимый свет, ультрафиолетовые и инфракрасные лучи, а также рентгеновое излучение. Различные виды электромагнитного излучения отличаются условиями образования и определенными свойствами (длиной волны и энергией). Рентгеновое излучение возникает при торможении быстрых электронов в электрическом поле ядра атомов вещества (тормозное рентгеновое излучение) или при перестройке электронных оболочек атомов при ионизации и возбуждении атомов и молекул (характеристическое рентгеновое излучение). При различных переходах атомов и молекул из возбужденного состояния в невозбужденное может происходить испускание видимого света, инфракрасных и ультрафиолетовых лучей. Гамма-кванты – это излучение ядерного происхождения. Они испускаются ядрами атомов при альфа- и бета-распаде природных и искусственных радионуклидов в тех случаях, когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением (альфа- или бета-частицей). Этот избыток мгновенно высвечивается в виде γ-квантов. Гамма-кванты лишены массы покоя. Это значит, что фотоны существуют только в движении. Они не имеют заряда и поэтому в электрическом и магнитном поле не отклоняются. В веществе и вакууме γ-лучи распространяются прямолинейно и равномерно во все стороны от источника. Скорость распространения их в вакууме равняется скорости света (3•1010 см/с).Энергия γ-кванта пропорциональна частоте колебаний. Частота колебаний гамма-квантов связана с длиной их волны. Чем больше длина волны, тем меньше частота колебаний, и наоборот, частота колебаний обратно пропорциональна длине волны. Чем меньше длина волны и больше частота колебаний излучения, тем больше его энергия и, следовательно, проникающая способность. Энергия гамма-излучения естественных радиоактивных элементов колеблется от нескольких кэВ до 2-3 МэВ и редко достигает 5-6 МэВ. Гамма-кванты, не имея заряда и массы покоя, вызывают слабое ионизирующее действие, но обладают большой проникающей способностью. Путь пробега в воздухе достигает 100-150 м.

Излучения разных видов оказывают неодинаковое воздействие на организм, что объясняется разной их ионизирующей способностью.

Так, альфа-излучения не способны проникнуть через наружный слой кожи и не представляют опасности до тех пор, пока вещества, испускающие альфа-частицы не попадут внутрь организма.

Бета-излучения опасны для организма, особенно при попадании радиоактивных веществ на кожу или внутрь организма.

Гамма-излучение обладает сравнительно небольшой ионизирующей активностью, но в силу очень высокой проникающей способности представляет большую опасность для организм.

Все живые существа на земле постоянно подвергаются воздействию ионизирующей радиации путем внешнего и внутреннего облучения за счет естественных (космическое излучение и природные радиоактивные вещества) и искусственных (отходы атомной промышленности, радиоактивные изотопы, используемые в биологии, медицине и сельском хозяйстве и др.) источников ионизирующих излучений.

Космическое излучение – это ионизирующее излучение, непрерывно падающее на поверхность земли из мирового пространства (первичное космическое излучение) и образующееся в земной атмосфере в результате взаимодействия первичного космического излучения с атомами воздуха (вторичное космическое излучение).

Первичный компонент космических лучей образуется вследствие извержения и испарения материи с поверхности звезд и туманностей космического пространства. Он состоит в основном из ядер легких атомов: водорода – протонов (79 %), гелия – α-частиц (20 %), лития, бериллия, бора, углерода, азота, кислорода и других элементов, большинство из которых обладают очень высокой энергией – в интервале 3•109 -15•109 эВ, а некоторые – 1017 -1018 эВ. Такие большие энергии первичные космические частицы приобретают за счет ускорения их в переменных электромагнитных полях звезд, многократного ускорения в магнитных полях звезд, многократного ускорения в магнитных полях облаков космической пыли межзвездного пространства и в расширяющихся оболочках новых и сверхновых звезд. Однако лишь немногие частицы достигают поверхности земли, так как они взаимодействуют с атомами воздуха, рождая потоки частиц вторичного космического излучения. Поэтому основную массу космических лучей, достигающих поверхности земли, составляет вторичное космическое излучение.

Вторичное космическое излучение состоит из всех известных элементарных частиц и излучений. Основную массу их, достигающих уровня моря, составляют: μ±-и π±-мезоны (70 %), электроны и позитроны (26 %), первичные протоны (0,05 %), γ-кванты, быстрые и сверхбыстрые нейтроны.

Вторичное космическое излучение по уровню энергии и составу:

1) мягкий, или малопроникающий, компонент объединяет электроны, позитроны, γ-кванты и частично быстрые протоны с энергиями порядка 100 МэВ;

2) жесткий, или сильнопроникающий, - состоит в основном из μ±-мезонов с энергиями порядка 600 МэВ, небольшого количества сверхбыстрых протонов, с энергией более 400 МэВ, α-частиц и незначительного количества π±-мезонов;

3) сильноионизирующий – содержит продукты ядерных расщеплений: протоны, α-частицы, дейтроны, тритоны и более тяжелые осколки ядер с энергией 10-15 МэВ;

4) нейтронный компонент – нейтроны различных энергий.

На уровне моря космическое излучение состоит в основном, как правило, из мягкого и жесткого компонентов.

Мягкий компонент поглощается слоями свинца толщиной 8-10 см и железа – 15-20 см; жесткий – проходит через свинец толщиной более метра, его можно обнаружить под землей и под водой на глубине нескольких километров.

Частицы мягкого и жесткого компонентов, обладая большими энергиями в веществе, создают наименьшую плотность ионизации. Поэтому их относительная биологическая эффективность приравнивается к 1.

Частицы сильноионизирующего компонента обладают большой плотностью ионизации. Их относительная биологическая эффективность приравнивается к относительной биологической эффективности протонов, нейтронов и α-частиц с энергией 10-15 МэВ, т. е. она равна 10.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 178
Бесплатно скачать Контрольная работа: Ветеринарная радиобиология