Контрольная работа: Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчисл

a3 = 0; R – непарне; R = R + N = 1 + 41 = 42;

R = R / 2 = 21;

a4 = 1 R = R + B = 21 + 18 = 39;

R - непарне;

R = R + N = 39 + 41 = 80;

R = R / 2 = 40.

Це ми одержали 2- n AB(mod N)

Тепер ми повинні ще раз скористатися цим алгоритмом для обчислення АВ (mod N).

A’ = 22n (mod N) = 22 ´ 5 (mod N) = 1024(mod 41) = 40 = 0´20 + 0´21 + 0´22 + 1´23 + 0´24 + 1´25

B ’= 40;

N = 41.

R = 0 a0 = 0 R - парне;

R = R / 2 = 0.

a1 = 0; R - парне;

R = R / 2 = 0;

a2 = 0 R - парне;

R = R / 2 = 0;

a3 = 1; R = R + B = 0 + 40 = 40;

R - парне;

R = R / 2 = 20;

a4 = 0; R - парне;

R = R / 2 = 10;

6. a5 = 1; R = R + B = 10 + 40 = 50;

R = R - N = 50 - 41 = 9.

Звертання

Для заданого числа , , знаходимо за допомогою розширеного алгоритму Евкліда числа і , що задовольняють рівності . Якщо , тo як зворотний можна взяти . Таким чином, звертання в кільці лишків можна виконати за бітових операцій.

Ділення

Оскільки , то ділення у кільці лишків виконується зі складністю .

Обчислення з многочленами

К-во Просмотров: 220
Бесплатно скачать Контрольная работа: Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчисл