Контрольная работа: Визначення площі між функціями інтегралом за методом трапеції на мові Pascal
Зміст
1. Постановка задачі3
2. Математичний опис рішення задачі4
3. Алгоритм програми. 6
4. Лістинг програми. 7
5. Контрольний приклад. 10
Список використаної літератури. 11
Постановка задачі
Скласти програму на мові Pascal розрахунку за методом трапецій площі між графіками функцій F1(x) = cos x2 + 1 i F2(x) = 2x^2 з точністю е = 0,0001.
2. Математичний опис рішення задачі
Розрахунок за методом трапецій площі між графіками функцій F1(x) = cos x2 + 1 i F2(x) = 2x^2 (рис.1) здійснюється вирішенням визначеного інтегралу , який саме і визначає площі під графіками. За властивістю інтегралів , тому в якості підінтегральної функції ми беремо функцію F(x) = cos x2 + 1 - 2x^2
Рис.1.
Саме метод трапеції реалізований на мові Pascal у наступному фрагменту програми, у якому для розрахунків використано цикл із заздалегідь визначеним числом повторень:
h:=(b-a)/n;
yp:=0;
x:=a;
for i:=1 to n-1 do
begin
x:=x+h;
yp:=yp+(cos(sqr(x))+1-exp(sqr(x)*ln(2)));
end;
yn:=cos(sqr(a))+1-exp(sqr(a)*ln(2));
yk:=cos(sqr(b))+1-exp(sqr(b)*ln(2));
s:=((yk+yn)/2+yp)*h;
де,
n – кількість відрізків, на які розбивається дільниця інтегрування;
i – допоміжна змінна циклу;
a – початкова межа інтегрування;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--