Контрольная работа: Влияние высоты установки антенны БС на уровень принимаемого сигнала

Из (2.3) следует, что эффективность ССПР не зависит от числа каналов на БС и возрастает с уменьшением радиуса ячейки R. В сущности это указывает на то, что уменьшая размеры ячеек можно повысить повторяемость частот, т.е. их одновременное использование в сети. Кроме того, из соотношения (2.3) следует целесообразность уменьшения размерности кластера К. Рассмотрим более подробно влияние размерности кластера на характеристики ССПР, в частности на уровень взаимных помех, возникающих вследствие повторного использования рабочих частот (рис.2.1). Взаимные помехи можно разделить на два вида.

Во-первых, мобильные станции в ячейках с совпадающими частотами создают помехи в каналах приема базовой станции соты номер один, находящейся в центре рис. 2.1 Отношение сигнал/помеха на входе приемника БС определяется выражением

(2.4)

где Рпр.б – мощность сигнала МС центральной соты на входе приемника собственной БС;

Рш.б – мощность тепловых шумов приемника БС;

Рп .м. i – мощность помехи от МС в совпадающей соте i-го кластера первого круга;

К1 – число совпадающих сот первого круга.

Во-вторых, базовые станции всех совпадающих ячеек в первом круге создают помехи мобильным станциям, находящихся в центральной соте. Отношение сигнал/помеха в этом случае

(2.5)

где Рпр.м – мощность сигнала БС центральной соты на входе приемника МС этой же соты;

Рш.м – мощность тепловых шумов приемника МС;

Рп.б1 – мощность помех от БС совпадающей ячейки i-го кластера первого круга.

Ячейки, создающие помехи на совпадающих частотах

Рисунок 2.1 – Влияние размерности кластера на уровень взаимных помех

Для получения количественной оценки уровня взаимных помех сделаем ряд естественных предположений. Считаем, что Рш.б и Рш.м можно пренебречь, поскольку уровень шумов ниже уровня взаимных помех. Полагаем, что , т.е. будем рассматривать сбалансированную систему. Кроме того, принимаем в расчет, что передатчики всех МС имеют одинаковую мощность. То же самое относится и к передатчикам БС.

Тогда имеем

(2.6)

где – расстояние между центрами ячеек с совпадающими частотами.

Подставляя в (4.6), получаем

(2.7)

При любой размерности кластера в первом кругу располагается шесть совпадающих ячеек, т.е. К1 =6. Кроме того, все относительные расстояния повторного использования частотных каналов равны, т.е. С учетом этого выражение (2.7) можно представить в виде

(2.8)

Для NМТ-450 =18 дБ. Если γ=4, то q=(6 63.1)1/4 =4.41. Отсюда необходимая размерность кластера К=q2 /3=6.48, т.е. К=7.

Таким образом, для получения защитного отношения 18 дБ необходимо выбрать кластер с размерностью не менее семи. В этом заключается один из недостатков всех аналоговых стандартов.

Переход к цифровым ССПР позволяет увеличить число каналов на соту ввиду того, что требуемое защитное соотношение резко уменьшается. Для стандарта GSМ оно равно 9 дБ, а для стандарта CDМА-IS-95 составляет 6 дБ. Это позволяет уменьшить мощность передатчиков БС и ближе располагать ячейки с совпадающими частотами.

Цифровые стандарты предоставляют возможность адаптироваться к увеличению числа абонентов. При увеличении количества абонентов область обслуживания каждой ячейки может быть уменьшена. Согласно (2.3) эффективность сети увеличивается благодаря возрастанию повторяемости одних и тех же канальных частот. Следует отметить, что имеется ряд обстоятельств, затрудняющих процесс дробления сот. В частности, чрезмерное уменьшение радиуса ячейки вызывает резкое увеличение числа пересечений мобильными средствами условных границ ячеек при передвижении абонентов. В связи с этим возрастает поток данных между многочисленными БС и ЦКПС, который требует обработки, что может привести к перегрузке систем управления и коммутации и, как следствие, к отказу всей системы.

Кроме того, если сеть БС имеет радиальную структуру, то с увеличением числа БС быстро растут затраты на сооружение соединительных линий БС–ЦКПС. Переход к радиально-узловой структуре позволяет оптимизировать сеть соединительных линий по критерию минимума затрат, однако и этот подход не позволяет избежать усложнения системы управления ССПР. Еще один способ снижения уровня помех и повышения эффективности ССПР связан с использованием секторных антенн. В этом случае на БС вместо одной антенны с круговой ДН использую несколько направленных антенн, позволяющих концентрировать излучение в пределах сектора и сокращать уровень излучения в противоположном направлении. На рис. 2.2 приведена модель повторного использования частот в секторизованных сотах, когда в кластер входят три соты и три БС (К=3). В этом случае на каждой БС задействовано три 120-градусные антенны, что позволяет использовать девять групп частот.

Рисунок 2.2 – Модель повторного использования частот при К=3

К-во Просмотров: 240
Бесплатно скачать Контрольная работа: Влияние высоты установки антенны БС на уровень принимаемого сигнала