Контрольная работа: Волокна

Рис. 1 - Структуры, образующиеся при окислении ПАН-волокна

УВ обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Температурная обработка состоит из нескольких этапов. Первый из них представляет собой окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов. В результате окисления образуются лестничные структуры, представленные на рис. 1. После окисления следует стадия карбонизации - нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур. Процесс термической обработки заканчивается графитизацией при температуре 1600-3000 °C, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %. Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения УВ могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков.


Свойства

УВ имеют исключительно высокую теплостойкость: при тепловом воздействии вплоть до 1600-2000°С в отсутствии кислорода механические показатели волокна не изменяются. УВ устойчивы к агрессивным химическим средам, однако окисляются при нагревании в присутствии кислорода. Их предельная температура эксплуатации в воздушной среде составляет 300-350°С. Благодаря высокой химической стойкости УВ применяют для фильтрации агрессивных сред, очистки газов, изготовления защитных костюмов и др. Изменяя условия термообработки, можно получить УВ с различными электрофизическими свойствами (удельное объёмное электрическое сопротивление от 2·10-3 до 106 ом/см) и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др.

Активацией УВ получают материалы с большой активной поверхностью (300-1500 м²/г), являющиеся прекрасными сорбентами. Нанесение на волокно катализаторов позволяет создавать каталитические системы с развитой поверхностью.

Обычно УВ имеют прочность порядка 0,5-1 Гн/м² и модуль 20-70 Гн/м², а подвергнутые ориентационной вытяжке - прочность 2,5-3,5 Гн/м² и модуль 200-450 Гн/м². Благодаря низкой плотности (1,7-1,9 г/см³) по удельному значению (отношение прочности и модуля к плотности) механических свойств УВ превосходят все известные жаростойкие волокнистые материалы.

Применение

УВ применяют для армирования композиционных, теплозащитных, хемостойких в качестве наполнителей в различных видах углепластиков. Наиболее емкий рынок для УВ в настоящее время - производство первичных и вторичных структур в самолетах «Боинг» и «Аэробус» (до 30 тонн на одно изделие). По причине резко возросшего спроса в 2004-2006 гг. на рынке наблюдался большой дефицит волокна, что привело к его резкому удорожанию.

Из УВМ изготовляют электроды, термопары, экраны, поглощающие электромагнитное излучение, изделия для электро- и радиотехники. Углеродный войлок - единственно возможная термоизоляция в вакуумных печах, работающих при температуре 1100 °C и выше. Благодаря химической инертности углеволокнистые материалы используют в качестве фильтрующих слоев для очистки агрессивных жидкостей и газов от дисперсных примесей, а также в качестве уплотнителей и сальниковых набивок. УВА и углеволокнистые ионообменники служат для очистки воздуха, а также технологических газов и жидкостей, выделения из последних ценных компонентов, изготовления средств индивидуальной защиты органов дыхания. Широкое применение находят УВА (в частности, актилен) в медицине для очистки крови и других биологических жидкостей. Широко применяется в автоспорте в качестве изготовления деталей кузова.

Органические (арамидные) волокна

Высокомодульные и высокопрочные органические (арамидные) волокна характеризуются меньшей плотностью, высокими модулями упругости при сжатии и изгибе, а также большим модулем упругости и прочности при растяжении по сравнению с теми же показателями для волокон из Е- или S-стекла.

По удельной прочности и модулю упругости в случае растяжения органические волокна с амидными группами превосходят все известные на сегодня армирующие волокна и сплавы, уступая по этим показателям лишь углеродным и борным волокнам. В связи с этим такие волокна часто называют высокомодульными и высокопрочными (прочность достигает 4,5 Гпа, а модуль упругости – до 160 Гпа).

Плотность арамидных волокон (1450 кг/м3) значительно ниже, чем плотность волокон из Е-скла (2500 кг/м3). Из арамидних волокон могут быть получены почти все типы волокнистых армирующих наполнителей: нити, ровинги, ткани разного плетения, бумага и тому подобное.

Арамидные волокна характеризуются достаточно высокой термостойкостью (в сравнении с другими типами органических волокон). Они не плавятся и не деструктируют вплодь до температур 400°С и выше.

Арамидные волокна используются в производстве полимерных композитов, поскольку температура переработки и эксплуатации полимерных матриц ниже температуры деструкции арамидних волокон.

Арамидные волокна, которые производятся в мире, сохраняют свои свойства при длительной выдержке при температуре не выше 180°С, следовательно, эта температура является предельной для длительной эксплуатации материалов на их основе. Это ограничивает возможность применения арамидних волокон в качестве наполнителя для ряда полиамидов и полимидных связующих, которые предназначенны для изготовления изделий, которые работают длительное время при температурах свыше 300°С. Арамидные волокна характеризуются очень высокой химической стойкостью.

Органические волокна, которые введены в состав термопласта, как правило, не ухудшают его химическую стойкость к различным средам, электроизоляционные свойства и морозоустойчивость. В то же время существенно уменьшается текучесть материалов при длительной нагрузке, повышается на несколько порядков длительная прочность, повышается стабильность размеров при тепловом воздействии, повышается верхний температурный предел эксплуатации и др.

Процесс получения волокон состоит из двух стадий: синтеза полиамидов и формирования. Синтез полиамидов – это низкотемпературная поликонденсация хлорангидридов ароматических дикарбоновых кислот и ароматических диаминов. Из полученного продукта вытягивают волокна через фильеры со скоростью 60 м/с. Прочность таких волокон достигает 4.5 Гпа, а модуль упругости – до 160 Гпа. Взаимодействие между фибриллами из-за водородных связей оказывается слабым. Это обстоятельство определяет общий для всех высокоориентированных волокон недостаток: низкую поперечную прочность. В связи с этим упруго-прочносные свойства полимерных композиционных материалов, армированных волокнами в направлении, которое не совпадает с осью волокна, определяются в основном свойствами связующего и величиной адгезионного взаимодействия.

В таблице приведены физико-механические характеристики некоторых видов арамидних волокон в сравнении с характеристиками типичных конструкционных сталей.

Органопластики широко применяют: в авиа- и космической технике, авто- и судостроении, машиностроении для изготовления элементов конструкций, пулезащитной брони, радиопрозрачного материала; в электро-, радио- и электронной технике - для обмотки роторов электродвигателей, производства электронных плат с регулируемой жесткостью и высокой стабильностью размеров; в химической машиностроении - для производства трубопроводов, емкостей; для производства спортивного инвентаря и в др. отраслях промышленности.

Арамидные волокна способны выдерживать в течение 1000 ч статическую нагрузку, по величине равной 90% от разрушающего напряжения при растяжении, длительно работают при повышенных температурах (180-200 °С), обладают высокой усталостной прочностью. Способность поглощать механические вибрации и звук в 2-4 раза выше, чем стеклопластики, и в 10-40 раз выше, чем у алюминиевых сплавов.

Теплопроводность органических волокон (наполнитель-ткани, жгуты или нити) в направлении, перпендикулярном слоям, составляет 0,012-0,020 Вт/(см•К), а коэффициент линейного термического расширения вдоль волокон может иметь отрицатательное значение (напр., от -2•10-6 до -4•10-6 К-1). Для арамидных волокон характерна высокая хим. стойкость к действию органических растворителей, смазочных масел, жидких топлив и воды. Арамидные композиты на основе полиимидных и фенольных связующих обладают огнестойкостью и низким дымовыделением при горении.

Полиолефиновые волокна

Полиолефиновые волокна, синтетические волокна, получаемые главным образом из изотактического полипропилена, полиэтилена. Формуют из расплавов полимеров экструзионным методом; выпускают в виде комплексных нитей, мононитей, нитей из ориентировочной пленки (плоской и фибрилллированной) и резаного волокна. Ориентационное вытягивание сформованных волокон (в 5-10 раз) осуществляют на обогреваемой металлической поверхности или в воздушной среде при т-ре на 20-30 °С ниже температуры плавления полимера. Фибриллированные нити изготовляют из ориентированных полосок пленки шириной 1-50 мм и толщиной 25-80 мкм, пропуская их через вращающийся валок-фибриллятор, на поверхности которого размещены иглы (6-64 на 1 см). При контакте с ними на поверхности пленки образуются надрезы, увеличивающиеся в размерах. Фибриллирующее устройство включает: фибриллятор; "плавающий" вал для изменения угла обхвата фибриллятора пленкой; тянущий блок, состоящий из трех валков, с помощью которых пленка получает необходимое натяжение.

Часть волокон и нитей выпускают окрашенными; крашение проводят в массе органическими и неорганическими пигментами. Для повышения устойчивости полиолефиновых волокон при нагревании и УФ облучения в полиолефины на стадии их синтеза или грануляции вводят стабилизаторы (фенолы, ароматич. амины, аминофенолы или др. соединения).

Основные свойства полиолефиновых волокон приведены в таблице. Прочность фибрил-лиррованных нитей с повышением степени фибрилляции снижается. Волокна и нити обладают высокими диэлектрическими свойствами (е 2,1-2,5 при частоте 1·106 Гц). Трудно воспламеняются, но горят. Гидрофобны, устойчивы в кислота и щелочах. Не растворяются в неполярных органических растворителях (бензол, толуол, декалин, тетралин) ввиду высокой кристалличности полиолефинов при комнатной температуре, но с повышением температуры набухают, а затем растворяются. Устойчивы к действию микроорганизмов.

Достоинства полиолефиновых волокон - высокая эластичность и низкая стоимость благодаря доступности сырья; недостатки - низкая светостойкость и относительно невысокая температура плавления.

Разработан способ получения высокомодульных (до 200 МПа) и высокопрочных (до 5 ГПа) полиолефиновых волокон из 2-3%-ных растворов полиэтилена высокой плотности (мол. м. 1,5-106 ). Сформованные нити подвергают высокоориентационной вытяжке до 40000 %; используют их главным образом для получения композиционных материалов.

К-во Просмотров: 346
Бесплатно скачать Контрольная работа: Волокна