Контрольная работа: Вычисления по теории вероятностей

Ответ: Вероятность того, что деталь поступила с 1-го автомата равна 20%.

Задача 4. Рабочий обслуживает 18 станков. Вероятность выхода станка из строя за смену равна . Какова вероятность того, что рабочему придется ремонтировать 5 станков? Каково наивероятнейшее число станков, требующих ремонта за смену?

Решение.

Используя формулу Бернулли, вычислим, какова вероятность того, что рабочему придется ремонтировать 5 станков:

где n – кол-во станков, m – кол-во станков, которые придётся чинить, p – вероятность выхода станка из строя за смену, q =1-р – вероятность, не выхождения станка из строя за смену.

.

Ответ: Вероятность того, что рабочему придется ремонтировать 5 станков равна 15%. Наивероятнейшее число станков, требующих ремонта за смену равно 3.

Задача 5. В двух магазинах, продающих товары одного вида, товарооборот (в тыс. грн.) за 6 месяцев представлен в таблице. Можно ли считать, что товарооборот в первом магазине больше, чем во втором? Принять = 0,05.

Все промежуточные вычисления поместить в таблице.

Магазин №1

Магазин №2

20,35

20,01

20,60

23,55

32,94

25,36

37,56

30,68

40,01

35,34

25,45

23,20

Пусть, a1 – товарооборот в 1 магазине, a2 – товарооборот во 2 магазине.

К-во Просмотров: 487
Бесплатно скачать Контрольная работа: Вычисления по теории вероятностей