Контрольная работа: Взаимодействия в коллоидных системах
Концентрационный профиль однозарядных противоионов между двумя заряженными поверхностями, находящимися в воде на расстоянии 21 А. Поверхностная плотность заряда равна 0.224 Кл/м2. Кривая соответствует уравнению Пуассона-Больцмана, точки - моделированию методом Монте-Карло.
Это означает, что противоионы нельзя полностью удалить. Иногда это явление называют ионной конденсацией. Однако конденсированный слой не связан непосредственно с поверхностью, речь идет о концентрации противоионов вблизи поверхности.
Плотность заряда посредине между стенками описывается следующим уравнением:
Таким образом, при увеличении расстояния между пластинами плотность заряда в центре уменьшается с расстоянием как Ma, независимо от поверхностной плотности заряда. Другими словами, вдали от поверхности ион обнаруживает знак плотности поверхностного заряда, но не ее величину!
Контактная теорема и осмотическое давление
Для стабильности коллоидных систем важна сила, действующая между двумя заряженными стенками. Выражение для силы легко выводится из основных положений, а получающиеся уравнения иногда называют контактными теоремами. Выражение для осмотического давления можно получить из двух независимых контактных соотношений в рамках приближения Пуассона-Больцмана:
,
Первое соотношение не содержит корреляционного члена и не является точным. Второе соотношение представляет собой точное выражение. Из данных, приведенных на рис., видно, насколько результаты приближения Пуассона-Больцмана согласуются с результатами моделирования методом Монте-Карло.
Зависимость осмотического давления от поверхностной плотности заряда в отсутствие электролита. Сплошные линии - результаты оценок на основании уравнения Пуассона-Больцмана. Точные зависимости, полученные методом Монте-Карло показаны штриховыми линиями. Расстояние между стенками 21 А: а - однозарядные противоионы; б - двухзарядные противоионы.
Осмотическое давление пропорционально концентрации ионов посередине между заряженными стенками, из чего следует, что отталкивание двойных слоев имеет главным образом энтропийную природу. При сближении заряженных поверхностей вторая поверхность ограничивает объем, в котором находятся противоионы, относящиеся к первой поверхности, и наоборот. Вследствие этих пространственных ограничений для противоионов и возникает отталкивание. В трактовке этого вопроса иногда можно встретиться с недопониманием сути, когда физической природой отталкивания между двумя заряженными коллоидными частицами считают их прямое электростатическое взаимодействие. Эта сила, конечно, имеет электростатическую природу, поскольку у незаряженных коллоидных частиц не существует противоионов, но она проявляется в виде энтропийного вклада. Корреляционный член, показанный на рис., всегда отражает притяжение и имеет ту же природу, что и квантово-механические дисперсионные силы. Он также действует между сферическими макроионами, окруженными противоинами. В этом случае корреляционная свободная энергия уменьшается с расстоянием г между макроионами как г*. Заметим, что величина корреляционного вклада практически одинакова для одно - и двухзарядных ионов. Однако он становится значительным в последнем случае из-за относительно небольшого вклада энтропии. Необходимо твердо помнить о том, что применять уравнение Пуассона-Больцмана для систем с двух - или многозарядными противоионами, а также при очень высоких концентрациях солей следует с очень большой осторожностью.
До сих пор мы анализировали системы в отсутствие солей, что, как правило, далеко от реальных систем. В то же время нужно представлять, что концентрация электролита во многих системах часто гораздо ниже, чем концентрация противоионов, необходимая для нейтрализации поверхности. В таких условиях полученные выше уравнения очень полезны, поскольку имеют аналитические решения.
Добавление соли и "приближение слабого перекрывания"
В наиболее общих и сложных ситуациях, когда в систему добавлены соли, уравнение Пуассона-Больцмана необходимо решать численно. При равновесии двойного электрического слоя с раствором соли обычно интерес представляет только величина осмотического давления, т.е. разница осмотического давления в растворе между двумя поверхностями и осмотического давления в объеме раствора. Другими словами:
Однако существует особенно простое асимптотическое выражение для свободной энергии и силы. Оно основано на решении Гуи-Чепмена и применимо для двух слабо перекрывающихся двойных электрических слоев. При этом условии уравнение Пуассона-Больцмана может быть линеаризовано, что позволяет избежать решения полного нелинейного уравнения. Свободная энергия G, нормированная на единицу площади, выражается уравнением
а величина осмотического давления Pocm :
где со - концентрация электролита в растворе, к - величина, обратная дебаев-скому радиусу экранирования, который был определен ранее), D= - расстояние между поверхностями, г - величина, связанная с потенциалом поверхности через выражение
.
Таким образом, сила, действующая между двумя полярными поверхностями, экспоненциально уменьшается с расстоянием между ними. Это полезное приближение, которое в большинстве случаев пригодно для расчета силы, действующей между плоскими заряженными стенками, погруженными в раствор электролита. Асимптотическое поведение осмотического давления согласно уравнению было подтверждено многочисленными экспериментами. Было доказано не только экспоненциальное уменьшение давления с расстоянием, но и установлено, что наклон зависимостей в пределах экспериментальной ошибки равен толщине ДЭС к-1 . Это можно рассматривать как проверку справедливости теории Дебая-Хюккеля и лежащего в ее основе приближения непрерывной диэлектрической среды. Изменение силы на коротких расстояниях при D < к-1 не очень точно описывается теорией, но несмотря на это можно "подогнать" решение полного нелинейного уравнения Пуассона-Больцмана под экспериментальные кривые, используя наряду с другими параметрами плотность поверхностного заряда как свободный параметр.
Для двух заряженных сферических коллоидных частиц свободная энергия взаимодействия имеет аналогичный вид:
где r - расстояние между сферами. Уравнение представляет собой соотношение Дебая-Хюккеля, уже встречавшееся нам ранее:
Силы взаимодействия между отрицательно заряженными поверхностями слюды в растворах L1NO3 различной концентрации. Эксперимент проведен с использованием прибора для измерения поверхностных сил
Ван дер Ваальсовы взаимодействия и константа Гамакера
Известная теория устойчивости дисперсных систем Дерягина, Ландау, Фервея и Овербека включает две составляющие: силу отталкивания двойных электрических слоев, которая рассчитывается по уравнению Пуассона-Больцмана, и силу притяжения Ван дер Ваальса.
Сила Ван дер Ваальса включает несколько вкладов. Во-первых, квантово-механические дисперсионные взаимодействия. Второе слагаемое появляется как результат термически усредненного диполь-дипольного взаимодействия. Третий вклад обусловлен взаимодействиями индуцированных диполей. Ван-дер-ваальсовы силы действуют как между полярными, так и неполярными молекулами и мало зависят от природы вещества. Это отличает их от электростатических сил, величина которых может меняться на порядки при добавлении небольших количеств электролита. Наиболее прямой путь расчета силы Ван дер Ваальса заключается в предположении, что взаимодействие попарно аддитивно, - этот способ расчета известен как подход Гамакера. Взаимодействие двух бесконечных плоских стенок описывается как: