Контрольная работа: Взаимодействия в коллоидных системах
Контрольная работа
по химии
вариант № 11
2009
Содержание
Взаимодействия в коллоидных системах
Взаимодействие двойных электрических слоев и устойчивость коллоидных систем
Уравнение Пуассона-Болъцмана
Контактная теорема и осмотическое давление
Добавление соли и "приближение слабого перекрывания"
Ван дер Ваальсовы взаимодействия и константа Гамакера
Структурные взаимодействия
Гидратные силы отталкивания
Силы, действующие между поверхностями слюды в среде линейного и разветвленного алканов
Гидрофобное притяжение
Силы деплеции
Непосредственное измерение взаимодействий в коллоидных системах
Взаимодействия в коллоидных системах
Потенциал взаимодействия между большими агрегатами или частицами в жидкой дисперсионной среде является эффективным потенциалом. Однако взаимодействие между коллоидными частицами настолько важно, что заслуживает отдельного обсуждения.
Взаимодействие двойных электрических слоев и устойчивость коллоидных систем
Стабилизация или дестабилизация коллоидной системы - это центральная проблема для многих промышленных процессов. Разработаны различные способы ее решения, но наиболее общий подход связан с регулированием электростатических взаимодействий. Если коллоидные частицы заряжены, основное внимание нужно уделять электростатическим взаимодействиям. Заряженные коллоидные частицы присутствуют почти везде - в глине и в почве, в мембранах, в бумаге и в бумажной пульпе, в торфе, красках и т.д. Белки также представляют собой заряженные коллоидные частицы. Заряд коллоидных частиц может возникнуть при диссоциации функциональных групп или в результате специфической адсорбции ионов на частицах. Геометрическая форма частиц может широко варьироваться: в золях присутствуют сферические частицы, глины состоят из плоских частичек, молекула ДНК имеет цилиндрическую форму. Несмотря на это такие системы имеют много общих свойств, которые рассматриваются ниже.
Уравнение Пуассона-Болъцмана
Для простоты ограничим математическое описание двумя плоскими заряженными поверхностями, находящимися друг от друга на расстоянии 2а. Примем, что заряд равномерно распределен по поверхностям, т.е. плотность заряда у одинакова. Согласно результатам моделирования, такую систему можно считать достаточно хорошим приближением. Кроме того, для упрощения примем, что в системе присутствуют только противоионы, способные нейтрализовать заряд поверхностей. Случай с присутствием других солей обсудим позже.
Две заряженные стенки, разделенные раствором, который содержит противоионы. Заряды на стенках равномерно распределены по поверхности и плотность заряда одинакова в любой ее точке. Рассмотрим потенциал ф и объемную плотность заряда р вдали от поверхности. Комбинируя уравнения Пуассона и Больцмана, получают так называемое уравнение Пуассона-Больцмана, описывающее термодинамику заряженной поверхности, которая находится в контакте с водным раствором:
где Z - зарядовое число противоиона и ро-нормировочная константа с размерностью плотности заряда. Уравнение является приближением среднего поля. Уравнение Пуассона-Больцмана для большинства случаев не имеет аналитического решения, поэтому необходимо прибегать к численным решениям. Для рассматриваемого здесь частного случая имеется аналитическое решение:
где величина s задается выражением
Решение этого уравнения можно получить простой итерацией, начиная с предположения, что s = р/4 и решая уравнение относительно tgS9 что дает более точное значение для S9 и т.д. На рис. показан типичный концентрационный профиль противоионов со значительным накоплением ионов вблизи заряженных стенок. Особенно простое решение получается в том случае, когда правая часть уравнения становится очень большой. При этом условии s стремится к р/2. Это решение имеет ряд интересных свойств. Рассмотрим, что будет происходить при разбавлении системы. Тогда пристеночная концентрация будет стремиться к предельному значению, которое определяется следующим выражением:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--