Контрольная работа: Задачі математичного програмування
x5 = 3.5
x2 = 0.5
x1 = 4.5
F(X) = 4*4.5 + 2*0.5 = 19
Складемо двоїсту задачу до поставленої задачі лінійного програмування.
y1+y2+y3≥4
-y1+3y2+2y3≥2
4y1+6y2+2y3 => min
y1 ≥ 0
y2 ≥ 0
y3 ≤ 0
Рішення двоїстої задачі дає оптимальну оцінок ресурсів. Використовуючи останню інтиграцію прямої задачі знайдемо,оптимальний план двоїстої задачі. Із теореми двоїстості слідує, що Y = C*A-1.
Сформуємо матрицю A із компонентів векторів, які входять в оптимальний базис.
Визначивши обернену матрицю А-1 через алгебраїчне доповнення, отримаємо:
Як видно із останнього плану симплексної таблиці, обернена матриця A-1 розміщена у стовбцях додаткових змінних.
Тоді Y = C*A-1 =
Запишемо оптимальний план двоїстої задачі:
y1 = 2.5
y2 = 1.5
y3 = 0
Z(Y) = 4*2.5+6*1.5+2*0 = 19
Завдання 3
Розвязати транспортну задачц.
1 |
2 |
4 |
1 |
5 |
200 |
К-во Просмотров: 527
Бесплатно скачать Контрольная работа: Задачі математичного програмування
|