Контрольная работа: Знаходження кусково-постійних конфігурацій множин
Анотація
У цій роботі були розглянуті основні засади комбінаторики та теорії множин на основі аксіоматики Цермело-Френкеля. Також була розв’язана задача з цих тем засобами мови програмування С++ та IDE C++ Builder. Це дозволило значно покращити мої знання з профільних дисциплін та підготувати гарного спеціаліста для держави.
Зміст
Вступ
Основна частина
1. Частково впорядкована множина
1.1 Аксіоми частково впорядкованої множини
1.2 Приклади
2. Комбінаторика
2.1 Теорія конфігурацій і теорія перерахування
2.1.1 Правило суми
2.1.2 Правило добутку
2.2 Блок-схеми
Висновок
Список використаних джерел
Додаток (постановка задачі, код програми, приклад)
Вступ
Теорія множин — розділ математики, в якому вивчаються загальні властивості множин. Теорія множин лежить в основі більшості математичних дисциплін; вона зробила глибокий вплив на розуміння предмету самої математики.
В даний час найпоширенішою аксіоматичною теорією множин є ZFC — теорія Цермело-Френкеля з аксіомою вибору. Питання про несуперечність цієї теорії (а тим більше — про існування моделі для неї) залишається нерозв'язаним.
Поняття частково впорядкованої множини та кусково-постійної конфігурації множин є одними з базових у математиці та широко застосовуються у різних її галузях, а також у суміжних науках (кібернетиці, економетрії тощо).
1. Частково впорядкована множина
Частково впорядкованою множиною називається пара яка складається з множини разом із рефлексивним,антисиметричним і транзитивним бінарним відношенням (його називають відношення часткового порядку).
Таким чином, за допомогою відношення ми маємо змогу "порівнювати" елементи P. Взагалі, на відміну від натуральних або дійсних чисел із звичайним відношенням порядку, у довільній впорядкованій множині можуть існувати елементи, які неможливо порівняти. Якщо для будь-якої пари елементів a, b впроваджується або то така називается лінійно впорядкованою множиною.
1.1 Аксіоми частково впорядкованої множини
1. (рефлексивність)
2. з і випливає a = b (антисиметричність)
3. з і випливає з (транзитивність)
Для будь-якої частково (відповідно, лінійно) впорядкованої множини довільна підмножина природним чином перетворюється на частково (відповідно, лінійно) впорядковану множину . При цьому у тоді і тільки тоді, коли це справджується у Р.
1.2 Приклади
--> ЧИТАТЬ ПОЛНОСТЬЮ <--