Курсовая работа: Акустическая эмиссия при катодном наводороживании малоуглеродистых сталей и титановых сплавов
На современном этапе развития АЭ исследований можно выделить следующие основные источники АЭ, действующие на разных структурных уровнях в металлах:
1. Механизмы, ответственные за пластическое деформирование:
процессы, связанные с движением дислокаций (консервативное скольжение и аннигиляция дислокаций, размножение дислокаций по механизму Франка-Рида; отрыв дислокационных петель от точек закрепления и др.);
зернограничное скольжение;
двойникование.
2. Механизмы, связанные с фазовыми превращениями и фазовыми переходами первого и второго рода:
превращения полиморфного типа, в том числе мартенситные;
образование частиц второй фазы при распаде пересыщенных твердых растворов;
фазовые переходы в магнетиках и сверхпроводниках;
магнитомеханические эффекты из-за смещения границ и
Таб.1.1. Параметры сигналов АЭ для некоторых источников
Вид источника АЭ | Амплитуда или энергия импульса АЭ, Па или Дж | Длительность сигнала, мкс | Ширина спектра сигнала, МГц |
Дислокационный источник Франка-Рида | (10-8 - 10-7 )G | 5- 5*104 | 1 |
Аннигиляция дислокации длиной 10-8 - 10-6 м | 4*(10-18 - 10-16 ) | 5*10-5 | 102 |
Образование микротрещины | 10-12 - 10-10 | 10-3 - 10-2 | 50 |
Исчезновение двойника размером 10-9 м3 | 10-3 - 10-2 | 104 | - |
Пластическая деформация объема материала с характерным размером 10-4 м | 10-4 | 103 | 0,5 |
Энергия тепловых шумов в единичн. полосе частот | 4,2*10-21 Дж/Гц | - | до 10 |
Примечание: G- модуль сдвига |
переориентации магнитных доменов при изменении величины внешнего намагничивающего поля.
3. Механизмы, связанные с разрушением:
образование и накопление микроповреждений;
образование и развитие трещин;
коррозионное разрушение, включая коррозионное растрескивание.
В таблице 1.1, приведены сведения, дающие представление о характеристиках некоторых из этих источников АЭ. Дополнительно, приведены данные об уровне акустических шумов, обусловленных тепловым движением атомов.
В поликристаллических материалах появление непрерывной АЭ обычно связывают с пластической деформацией отдельных зерен поликристалла. В поликристаллической структуре из-за неравномерного распределения напряжений пластическая деформация отдельных кристаллов возникает при малой общей деформации, когда металл с феноменологической точки зрения находится в области упругости. Поэтому по сигналам АЭ можно судить о появлении неоднородностей и микродефектов на начальной стадии деформирования и разрушения материалов.
Практическое использование явления АЭ основано на регистрации упругой энергии, выделяемой в самом материале контролируемого объекта. Зарождение, перемещение и рост дефектов сопровождаются изменением микроструктуры и напряженно-деформированного состояния материала. При этом происходит перераспределение упругой энергии, что приводит к излучению АЭ-сигналов. Дискретная АЭ возникает при развитии дефектов. Поэтому с ее помощью можно выявить развивающиеся и поэтому потенциально опасные, с точки зрения катастрофического разрушения конструкций, дефекты. Этим метод АЭ выгодно отличается от традиционных методов ультразвукового контроля. В связи с этим большая часть экспериментальных и теоретических работ в области АЭ посвящена изучению взаимосвязи характеристик АЭ-сигналов с параметрами напряженного состояния и разрушения материалов. Многими авторами предприняты попытки определения функцио?