Курсовая работа: Алгоритм раскраски графа (точный)
ПС =(F4 +F5 )(F2 +F3 )F1 *(F1 +F3 +F5 )F4 *(F2 +F4 )F4 =(F2 +F3 F4 )F1 F4 =F1 F2 F4 +F1 F3 F4 .
Каждое из двух полученных слагаемых содержит в неявном виде все вершины графа G =(Х,U), Таким
образом, для раскраски требуется минимум 3 цвета. Раскроем слагаемые и удалим дублирующие вершины.
В результате получаем два варианта решения:
F1 F2 F4 ={ХЗ,Х4;Х2;Х1,Х5,Х6,Х7} или
F1 F2 F4 ={ ХЗ,Х4;Х2X6;Х1,Х5,Х7};
F1 F3 F4 ={X3;X2,Х4;Х1,Х5,Х6,Х7}
или F1 F3 F4 ={XЗ,X4;X2;X1,X5,Xб,X7}.
Первый и последний варианты совпали. Получены три различных варианта минимальной раскраски вершин графа.
2.2 Разработанный алгоритм
Разработанный алгоритм работает на основе операций с матрицей смежности.
Данный алгоритм реализуется следующим образом:
За основу берется матрица смежности M для данного графа G.
Затем создается массив A, в каждой строке которого содержится множество вершин A[i]. первым элементом этого множества является вершина Xi0, номер которой совпадает с номером строки. Остальные члены этого множества – все вершины данного графа G, смежные первой вершине из этого множества.
Далее с этим массивом A проводятся следующие манипуляции:
Множество вершин A[i] в каждой строке просматривается, начиная со второго элемента Xi1 этого множества A[i], и по матрице смежности M устанавливается, смежна ли данная вершина Xij всем предыдущим вершинам из множества A[i], начиная с первой – Xi0. Если обнаруживается, что одна из вершин Xij при рассмотрении не смежна с другими вершинами Xik (k=0,j-1) этого множества A[i], то она удаляется из этого множества. Продолжается рассмотрение остальных вершин Xij до тех пор, пока множество не рассмотренных вершин не станет пустым. Таким образом, из данного множества вершин A[i], смежных с первой вершиной этого множества – Xi0 будут удалены все те вершины, которые не смежны всем остальным вершинам этого множества A[i]. Таким образом, оставшееся множество вершин A[i] будет являться максимальным полным подграфом от первой вершины этого множества Xi0.
После рассмотрения одного множества A[i] в массиве A рассматриваются следующие, по той же схеме. Из них также удаляются вершины. В конечном счече будет получен массив A, в каждой i-й строке которого будет содержаться максимально полный подграф A[i], возможный от i-й вершины Xi0.
На следующем шаге алгоритма будет создан еще один массив B, содержащий множество целых чисел. Каждый i-й элемент B[i] этого множества B представляет собой количество вершин в соответствующем максимально полном подграфе A[i]. Например если 3-й элемент данного множества равен 5, это означает, что максимально полный подграф, построенный от 3-ей вершины состоит из 5 вершин, включая 3-ю. множество вершин {X30..X34}, которые составляют этот подграф A[3] является мнжеством вершин в 3 строке массива A.
После того, как были созданы массивы A и B, создается линейный список С, каждый элемент которого содержит множество вершин X, составляющих уникальный наибольший полный подграф графа G.
Очевидно, что массив A будет содержать в себе одиаковые множества вершин. Единственным отличием этих множеств друг от друга будет то, что первый элемент каждого такого множества будет отличен от первого элемента такого же множества, находящегося в массиве A.
Например, если в массиве A имеется следующее множество вершин, состовляющее полный подграф: {2,4,5,7}, что означает, что во 2 строке массива А содержится это множество вершин, состоящее из 4 элементов, массив В содержит 4 одинаковых элемента – 4 по адресам 2,4,5,7. Однако это означает, что в 4, 5 и 7 строках массива А будет содержаться то же самое множество вершин.
Во время формирования списка С этот факт учитывается.
Список формируется следующим образом: в массиве В ищется максимальный элемент bmax. Это целое число, показывающее размер наибольшего полного подграфа графа G. Затем просматривается массив В. И если соответствующий элемент B[i]по адресу i равен bmax, то создается новый элемент в списке, в него заносится наибольший полный подграф из массива А по адресу i. Проводится дальнейший просмотр массива В и ищутся другие подграфы, содержащие bmax вершин. Если таковые находятся (а они обязательно находятся) то на этом этапе выполняется проверка, не добавлено ли уже это множество вершин A[i] в список НПП. Проверка осуществляется следующим образом: список С просматривается сначала, и каждое множество вершин, содержащееся в элементе этого списка сравнивается с множеством A[i]. Если обнаруживается, что такое множество A[i] уже содержится в списке С, то оно пропускается, происходит дальнейшее рассмотрение массива В. В противном случае, если такое множество не было найдено в списке, то создается еще одна ячейка списка С и в нее записывается множество A[i].
Таким образом, после того, как закончится рассмотрение массива В, то есть будут рассмотрены все возможные НПП и уникальные будут добавлены в список С, полученный список С будет содержать в себе все возможные НПП для данного графа G.
3. Описание программы
3.1 Общие сведения
Программа нахождения максимально полного подграфа в произвольном графе реализована на языке VisualC. Программа имеет имя diskretka.exe
Программа содержит около 705 строк, исполняемый код программы (файл diskretka.exe) занимает 192 Кбайт оперативной памяти и примерно столько же на диске. Исходный текст программы на языке VisualC (файл diskretka.cpp) занимает 15.8 Кбайт памяти на диске.
3.2 Вызов и загрузка
В среде VisualC команда File-OpenWorkspace-diskretka.dsw