Курсовая работа: Алгоритмы сортировки, поиска длиннейшего пути во взвешенном графе и поиска покрытия, близкого к кратчайшему
Введение
Теория алгоритмов и практика их построения и анализа является концептуальной основой разнообразных процессов обработки информации. В настоящее время теория алгоритмов образует теоретический фундамент вычислительных наук. Применение теории алгоритмов осуществляется как в использовании самих результатов (особенно это касается использования разработанных алгоритмов), так и в обнаружении новых понятий и уточнении старых. С ее помощью проясняются такие понятия как доказуемость, эффективность, разрешимость, перечислимость и другие.
Фактически, алгоритм – это точно определенная (однозначная) последовательность простых (элементарных) действий, обеспечивающих решение любой задачи из некоторого класса, т.е. такой набор инструкций, который можно реализовать чисто механически, вне зависимости от умственных способностей и возможностей исполнителя.
Как заметил Кнут: «Алгоритм должен быть определен настолько четко, чтобы его указаниям мог следовать даже компьютер».
Эффективность алгоритма определяется анализом, который должен дать четкое представление, во-первых, о емкостной и, во-вторых, о временной сложности процесса.
Речь идет о размерах памяти, в которой предстоит размещать все данные, участвующие в вычислительном процессе (естественно, к ним относятся входные наборы, промежуточная и выходная информация), а также физических ресурсах, затраченных исполнителем.
В курсовой работе представлены различные подходы и методы использования алгоритмов, приведены оценки сложностей алгоритмов, реализации математических задач с помощью алгоритмов. Проведена краткая характеристика используемых структур данных, эффективность их применения в данной задаче
1. Выбор варианта задания
В основе выбора индивидуального варианта задания лежит процедура определения целочисленного остатка от деления выражения Y, образованного суммой номера студента по журнальному списку и числом Х, полученным умножением последней цифры номера группы на 100. После определения значения выражения Y находится остаток от деления для соответствующего списка алгоритмов:
Ymod 4 + 1 – алгоритмы покрытия;
Ymod 6 + 1 – алгоритмы на графах;
Ymod 5 + 1– алгоритмы сортировки.
Мой номер по журнальному списку равен 5, группа АЕ-035. Поэтому имеем Y=5+5*100=505. Получаем такие варианты:
А = 505 mod 4 +1 = 2;
B = 505 mod 6 +1 = 2;
C = 505 mod 5 +1 = 1.
Таким образом, имеем следующие алгоритмы: покрытия – по методу «построение одного кратчайшего покрытия», на графах – нахождение самого длинного пути, сортировки – простыми включениями.
Постановка задачи. Необходимо ввести таблицу покрытия. Алгоритм должен найти покрытие, близкое к кратчайшему.
2. Алгоритм сортировки
2.1 Математическое описание задачи и методов её решения
В общем смысле сортировку следует понимать как процесс перегруппировки заданного множества объектов в некотором определенном порядке. Её цель – облегчить последующий поиск элементов в таком отсортированном множестве.
Если у нас есть элементы а1, …, аn , то сортировка есть перестановка этих элементов в массив ак1, …, ак n , где при некоторой упорядочивающей функции f выполняются отношения f(ak 1 )≤f(ak 2 )≤…≤f(akn ).
Метод сортировки называется устойчивым, если в её процессе относительное расположение элементов с равными ключами не изменяется.
Существуют такие алгоритмы сортировок массива: сортировка с помощью прямого включения, прямого выбора, прямого обмена, включений с уменьшающимися расстояниями, дерева, разделения и другие.
2.2 Словесное описание алгоритма и его работы
В силу простоты алгоритм сортировки простыми включениями не требует разделения на подпрограммы.
Элементы мысленно делятся на уже «готовую» последовательность а1 …а2 и исходную последовательность а1 …аn . При каждом шаге, начиная с i=2 и увеличивая i каждый раз на единицу, из исходной последовательности извлекается i-й элемент и перекладывается в готовую последовательность, при этом он вставляется в нужное место.
Словесное описание алгоритма сортировки простыми включениями:
0. В готовую подпоследовательность записывается а1 , во входную – а2 ,….аn .
--> ЧИТАТЬ ПОЛНОСТЬЮ <--