Курсовая работа: Анализ алгоритмов нечисленной обработки данных
2.1.3 Описание построения дерева
Пусть каждый элемент исходного массива a состоит из двух полей: признака a[i,1] и собственно значения элемента a[i,2], где i – номер элемента в исходном массиве. Чтобы описать массив, упорядоченный в виде дерева, каждый элемент надо снабдить ещё, по меньшей мере двумя полями, содержащими номера элементов, расположенных в конце левой и правой дуг, исходящих из вершины, в которую помещён данный элемент. Этих двух дополнительных полей достаточно для построения дерева и для поиска в нем. Однако для других операций с деревом желательно иметь ещё одно поле, содержащее номер того элемента, к которому подвешен (безразлично, слева или справа) данный элемент. Пусть исходный массив уже содержит все необходимые поля, то есть, описан как
mas=array [1..n, 1..5] of integer,
но значения дополнительных полей a[i,3], a[i, 4] и a[i,5] перед началом работы алгоритма не определены. Называются эти поля соответственно левым, правым и обратным указателем. Если после окончания работы алгоритма левый (правый) указатель какого-либо элемента содержит нуль, это означает, что из вершины, в которую помещён данный элемент, не исходит левая (правая) дуга. Обратный указатель содержит нуль только для первого элемента, который помещён в корне дерева. Остальные детали процедуры ясны из приведённого в начале этого раздела словесного описания алгоритма.
2.1.4 Описание сортировки деревом
Имеются два массива: a – исходный и b – отсортированный. В массиве b элементы массива a расположены в порядке возрастания значения признака. Если у элемента есть левая ветвь, то элемент с наименьшим значением признака разыскивается на этой ветви. Если у элемента левой ветви нет, то он переносится в массив b, так как в массиве нет элемента с меньшим значением признака. После этого очередной элемент разыскивается в правой ветви, если она есть, или возвращается по обратному указателю. После возвращения к какому-либо элементу по левой или правой ветви дальнейшие действия идут так, как будто у этого элемента соответствующей ветви нет.
2.2 Линейный поиск
Для неупорядоченного исходного массива единственным способом нахождения заданного элемента в этом массиве является линейный поиск. Этот метод состоит в последовательном сравнении каждого элемента массива с заданным для поиска элементом. При линейном поиске иногда просматривается половина, а то и больше элементов исходного массива. Этот метод удобен и прост для массивов с меньшей длиной. Для массивов большей длины это метод вызывает затруднения, так как время поиска будет очень медленным.
Применим метод линейного поиска на примере поиска в неупорядоченном массиве A элемента X=11. Дан массив A, который состоит из 10 элементов.
Таблица 1 – Линейный поиск
№ Элемента | Сравнение | № Проверки |
1 | 511 | 1 |
2 | 12≠11 | 2 |
3 | 68≠11 | 3 |
4 | 0≠11 | 4 |
5 | 92≠11 | 5 |
6 | 87≠11 | 6 |
7 | 7≠11 | 7 |
8 | 32≠11 | 8 |
9 | 11=11 | 9 |
10 | 24 |
Из таблицы 1 видно, что для нахождения элемента X=11 пришлось выполнить 9 сравнений. Если бы элемента 11 не оказалось под номером 9, то поиск выполнялся бы до его нахождения, либо до окончания массива.
2.3 Двоичный поиск
Одним из эффективных методов поиска в больших отсортированных массивах является двоичный, другое название бинарный, поиск. Так называемый, поиск методом деления пополам. Вместо просмотра подряд всех элементов массива делим его пополам. Так как массив отсортирован, то, сравнивая искомый элемент со значением среднего элемента массива, можно сделать вывод, о том, что может ли быть элемент с таким значением в массиве и в какой половине он находиться, то есть, определить область дальнейшего поиска. Затем делится пополам та часть массива, в которой находится элемент, и так до тех пор, пока рассматриваемая часть массива получится состоящей из одного элемента.
Допустим, есть упорядоченный по возрастанию массив из целых чисел. Необходимо определить, содержит ли этот массив некоторое число (образец).
Алгоритм двоичного поиска:
1. Сначала образец сравнивается со средним (по номеру) элементом массива
- если образец равен среднему элементу, то задача решена;
- если образец больше среднего элемента, то это значит, что искомый элемент расположен, ниже среднего элемента (между элементами с номерами sre+1), и за новое значение verhe принимается sre+i, а значение nize не меняется;
- если образец меньше среднего элемента, то это значит, что искомый элемент расположен выше среднего элемента (между элементами с номерами verhe и sre-1), и за новое значение nize принимается sre-1, а значение verhe не меняется.
2. После того как определена часть массива, в которой может находиться искомый элемент, вычисляется новое значение sredе и поиск продолжается.
Применим метод двоичного поиска на примере поиска в упорядоченном массиве. X – искомый элемент, равный 11, а A – массив, состоящий из 10 элементов:
1) 0 - verhe
5
7
11
12 - srede
24
32
68